COMP512 - Distributed Systems
Project Final Report

Zhaoqi Xu <zhaoqi.xu@mail.mcgill.ca>
Zhiguo Zhang <zhiguo.zhang@mail.mcgill.ca>

November 2017

Contents

1 General design and architectureccvvveiiiiiiiiiiiiiiiiiiiiiiiiieieircieeiennrcenecens 3

l.a RMlI-based system architecture and middleware design
I.b TCP-based system architecture and middleware design
l.c Customer design

P) Y T L {1 6
2.a Log file
2.b Transaction
2.c Master record
3 Components and features implementation...........ccceeiiieiiiniiiiiiiieiiiiiiiieieinnennns 6
3.a Centralized lock manager
3.b Transaction manager
3.c Time-to-live mechanism
3.d Shadowing
3.e Logging
3.f Two Phase Commit
3.2 Methods implementation on middleware adapted to distributed environment
4 Concurrency control with Two Phase LocK......cccccoveiiiiiiiiiiiiiiiiiiiiiiiiiinnn 11
R T 1) 3 31 T e 12

5.a Basic functionalities of resource manager and middleware

5.b Two Phase Commit

5.c Crash and recover at resource manager

5.d Crash and recover at middleware(customer resource manager)
5. Crash at recover transaction manager

LS D) i 111 <1

6.a Customer design

6.b Abort recovery

6.c Resource Manager reconnection to Middleware
6.d Handle Customer and Transaction Manager crash

7 Performance evaluation.......oeeeeeeuiiiieeieeeeeneireeeeeeeeseesescesesssssssocssssssssssnons

7.a Single client
7.b Multiple clients

1 General design and architecture

l.a RMI-based system architecture and middleware design
Figure 1.1 shows the RMI-based system architecture.

Middleware

Middleware process

Proxy for]
Middleware ome flight
N\ registry customer server
: NN

— Proxy for .
middleware |l functions
R 2 Proxy for,
clientl Customer car
: server
»port NN

.

Data

Proxy for|
room
server

N clients

Transaction
Manager

¢ > Lock Manager

Transaction
HashTable

[

NV

Proxy for |B57
e middleware

client2 Thread Pool
: (Time-to-live)

room server

Figure 1.1 RMI-based Travel Reservation System

Flight, car and room data are stored separately on three Resource Manager servers while the
customer data is stored on the middleware. Besides, each RM server holds a registry
correspond to its service. The registry of customer class is keeped on the middleware. The
middleware knows the server name and port number of each Resource Manager. When the
middleware is launched, it automatically looks up the registry on each Resource Manager and
creates a proxy for all remote objects on that RM. Middleware also creates a registry for
customer remote objects. The clients know the server name and port number of middleware.
When a client is launched, it will do the same thing as middleware does and create a proxy
for all the remote objects on middleware. In this way, we get the clients and servers
communicate through a global middleware. The Transaction Manager, Lock Manager and
Thread Pool were designed for concurrency control which we talk in Components and
features implementation section. Figure 1.2 shows the working flow of a complete transaction
in our distributed system. We took command ‘newroom’ as an example.

transaction id

—
]
]

transaction id

r
S
@
[=
[]
£
Q
o
S
=1
[=]
(%]
Q
o
o}
o
eg_
]
S5
©
e
Q
O3
g .
S5
=]
Q
2 &
g gl }------
o £
[=
=
=
g
[72]
[J]
a
=
3 b---p--
o
b=}
=
=
=
<
g
wn
=
=
ks
5 U
[—
S
5
©
[%2]
S
©
=3
5
v

Add a new room

1
I
]
1
1
1
1
1
1
1
1
1
1
1
I
]
]
1
1
1
1
1
!
1
1
:l writeData()
1
1 | addHistory()

< =]
] =

[
- II_IIEI
[}

ok()

addRooms()

Commit

(transaction id)

1 commit|

1 commit{transaction id)1

1
oy
1

ak()

L. -]}

unlock()

—r

ok()

||||||| -
=
c
3]
E @
v g
g
=
- =y - .
<
&
=]
e —————-—- -
<
£
(]
||||||||| =

Transaction Centralized
Resource manager
manager lock manager

Middleware

Client

Figure 1.2 Add a new room example

1.b TCP-based system architecture and middleware design
Figure 1.3 shows the TCP-based system architecture.

y /

B Middleware Process E
y—
A/

’ sockets out to servers for
thread_1

y 4

clientl

flight server

<->{\

OO O

car server

Some

customer
. sockets out to servers for
functi thread_2

client2 room server

Figure 1.3. TCP-based Travel Reservation System

The basic structure of TCP-based system is very similar to the RMI-based version. The flight,
car and room is handled separately on three Resource Manager while the customer resides on
the middleware. The servers and middleware are multi-threaded. The server is listening
requests on a port. When a request arrives, the server creates a new socket and passes it as a
parameter to the new created thread. This way, a connection between server and client is
established in the thread and the newly created socket gives the server destination
information. The implementation of middleware is more complicated. It not only has to
handle the request from client as the server does, but also need to create three sockets for the
Resource Manager respectively in a thread (we assumed that the middleware knows the
server name and port when it is launched). Therefore, each middleware thread has one server
socket connected to client and three sockets connected to RMs. Once we have all the sockets
created, we can bind data streams on the sockets and send query through the data streams to
achieve communication between clients and servers. We did not implement concurrency
control for this system because the phase 2 and 3 was based only on the RMI-based system.

I.c Customer design

We implemented customer functions and stored customer data on middleware server in both
systems. The main reason we designed the system this way is that we can reduce data transfer
frequency and improve system performance compared to handling the customer by an
additional server. When doing operations corresponding to customers like reserveflight,
reservecar, reserveroom and deletecustomer, we need to query data from multiple resource
managers, centralize these data on middleware and then forward the processed data back to
the resource managers. In our system, we only need to store the processed customer data
locally on the middleware. If the customer is handled by an additional server, we will have to
forward it through WAN. The data transfer speed through hard drives is much faster than the
speed through WAN, thus we can make sure that the system performs better under this
architecture.

2 Data design

2.a Log file

We implemented a serializable class called LogFile for convenience of saving log to and
loading log from disk. The structure of LogFile is very simple. It contains a transaction id
which is used to notify which transaction this log belongs to and a ArrayList of string that
contains the necessary records.

2.b Transaction

Transaction is also implemented as a class. Each transaction contains a transaction id, a
operation counter which tracks the number of operations that occurs in this transaction, a
stack of vectors of string used to save the transaction history. It also has three functions
addHistory(), addSubHistory(), pop() that are responsible for managing the transaction
history.

2.c Master record

For convenience of transferring data between memory and disk, master record of shadowing
is also maintained in a serializable class called MasterRecord. A flag indicating the active
copy and the transaction last committed are maintained in this class.

3 Components and features implementation

3.a Centralized lock manager

In our project, we decided to use a singleton lock manager that has all lock information
including customer, cars, flights, and rooms. The reason to use a single lock manager is that
whenever the middleware needs to request a lock, it only needs to request it locally. This
reduces unnecessary hops between middleware and resource managers. The details of
implementation of lock manager will be discussed in three parts.

1. Lock conversion

The first task in phase 2 is to add lock conversion to the given lock manager
implementations. The two functions modified are Lock() and LockConflict(). In
Lock function, if bConvert is set to 0, then we remove the existing READ lock
and add new WRITE lock on the data item. In LockConflict function, in the case
that the transaction already has a lock and is requesting a WRITE lock, there are
two cases to analyze i.e. the type of lock already holding. If the transaction
already had a READ lock, we need to check if there are other transaction holding
any READ lock on the item(No other transactions can have WRITE lock). If
some other transactions also had READ lock, LockConflict returns true.
Otherwise, bConvert is set to 0 and function returns false. If the transaction
already has a WRITE lock, new WRITE lock request is redundant and the
functions throws RedundantLockRequestException. Then, lock function catches
the redundant lock exception and returns true, i.e. ignores the new lock request.

2. Requesting lock from transaction manager

Whenever a client sends request on any data items, the middleware invokes
requestLock() to transaction manager. Then, transaction manager calls Lock() to
Lock manager. Depending on whether there is a lock conflict, the lock manager
will return true for lock can be granted, return false if some arguments are
invalid, or wait for lock conflicts to be solved(with possibility of deadlock
existence). The requestLock() function also increments the operation counter of
the given transaction ID. This helps to reset the time-to-live timer, which will be
discussed in 3.c.

3. Deadlock
The lock manager handles deadlock through timeout mechanism. That is,
whenever there is a lock conflict, the lock manager wait until the lock is released
or the timeout is reached. In the meanwhile, the client is blocked. If the
transaction has been waiting for a period longer than timeout period, the lock
manager throws deadlock exception. The transaction manager catches the
deadlock exception and aborts the transaction which caused the deadlock
exception.

3.b Transaction manager

The transaction manager is a singleton object inside the middleware server, it maintains an
active transaction hash table mapping transaction ids to transaction objects. This allows the
middleware to know which transaction that a operation belongs to. Transaction class consists
of the transaction identifier, operation counters, and a stack of transaction histories. The
operation counter is used for time-to-live mechanism. The stack is used for the recovery
process if the transaction is aborted. The reason to use stack is that the last operation is
recovered first. Transaction manager also enables extra features for middleware including
start(), commit(), abort() and shutdown().

The start function increments the transaction counter and returns the current transaction
counter as a new transaction id. Moreover, the start function also creates a transaction object
that is stored in hash table and starts a TimeThread for time-to-live mechanism. Since we are
using strict 2PL, the commit function is implemented as a one-phase commit.

The commit function checks the validity of transaction id. If the id is valid, the transaction
manager sends commit request to related Resource managers. The Resource managers
execute the commit function locally and update transaction hash table. Afterwards, in
transaction manager, the commit function unlocks all the locks that transaction holds, and
removes it from active transaction hash table.

For the abort function, middleware and resource managers handle the record recovery using
the local transaction history stack and transaction manager does the validation check and
unlocks locked data items.

For the shutdown function, the transaction manager checks if there are any active
transactions. If there is no active transactions, the transaction manager returns true and the
middleware shuts down other resource managers and middleware. An extra thread returns
true to client if middleware shutdown succeeds.

3.c Time-to-live mechanism

For each transaction, we start a separate thread(7imeThread) to inspect the time-to-live
values of that transaction. If one has been idle for more than 60 seconds, the transaction will
be aborted. We keep an operation counter in each transaction. When an operation involving
this transaction is carried out, the operation counter is incremented and the time to live is
reset. The TimeThread keeps checking whether the operation counter is incremented and time
to live expires. If the operation counter is not incremented within the time to live, then the
transaction is aborted.

3.d Shadowing

Shadowing is implemented the same way as we have seen in class. We keep two copies of
database: one committed version and one working version. We also keep a master record that
indicates the latest committed version. Master record is updated every time the transaction is
successfully committed. Let’s say we have two copies A and B of database and A is the
where the master record currently point to. Upon execution of T, we update main-memory
copy. Upon commit request of T, We first write main-memory copy to B and then write
master with pointer to B and transaction id to disk. Upon abort request of T, we simply
discard main-memory copy and read A into main memory. If crash before writing master
record, A remains latest committed copy. After restart of system, A will be loaded into main
memory and T will abort. If crash after commit of T but before commit of any other
transaction, master record contains T and points to B. Upon restart of system, B is loaded into
main memory.

3.e Logging

To recover from crash, the processors must know their state to be able to tell others whether
they have reached a decision and the status must be available after failure and restart. This is
achieved by writing a log record to disk for every state change in protocol and every
transaction. As mentioned in 2.a, the log file is saved as a serializable object in the disk which
contains states and a transaction id. To make the log easier to use for recovery, we keep a log
per transaction per site. For example, if we have a transaction T with transaction id 5
involving two resource managers Car and Room, before T is successfully committed or
aborted, there will be three log files existing in our system. One named ‘Car_5.log’ is on the
Car RM, one named ‘Room_J5.log’ is on the Room RM and one named ‘TM 5.log’ is on the
middleware which is the log of Transaction Manager. The log file will be automatically
deleted from the disk once the transaction is completed, namely, either abort or commit.
Figure 3.1 and 3.2 show when and what status is written into the log file for resource
managers and coordinators(transaction manager) during Two Phase Commit process. The
details about how the system recover from crash with the help of the log file will be
introduced in 5.c and 5.d.

Resource manager

Wait for
VOTE-REQUEST

BEFORE_YES LOG

Vote NO Vote YES

AFTER_YES LOG

BEFORE_ABORT Wait for decision

LOG

BEFORE_COMMIT LOG

Committed

AFTER_ABORT LOG AFTER_COMMIT LOG

Figure 3.1 Log points on resource manager for Two Phase Commit

Transaction manager

Initial

BEFORE_SENDING_REQUEST
LOG

Send
VOTE-REQUEST

Wait for votes

SOME_REPLIED LOG SOME_REPLIED LOG

AFTER_REPLIES_BEFORE_DECISION
LOG

AFTER_REPLIES_BEFORE_DECISION
LOG

BEFORE_ABORT LOG BEFORE_COMMIT LOG

Send ABORT Send COMMIT
SOME_ABORTED LOG SOME_COMMITTED LOG
y
Aborted Committed
AFTER_ABORT LOG AFTER_COMMIT LOG

Figure 3.2 Log points on transaction manager for Two Phase Commit

3.f Two Phase Commit

We will briefly describe how Two Phase Commit works here, since it is clearly explained in
slides. Firstly, the coordinator (transaction manager) starts the commit process and sends a
VOTE-REQUEST to all participants (resource manager). Upon receiving a VOTE-
REQUEST, the participants sends a vote with YES or No. If vote is NO, it aborts the
transaction locally. On the coordinator side, if all vote YES, it sends COMMIT decision to all
participants and commits locally, otherwise, it sends ABORT decision to all participants and
aborts locally. Upon receiving decision, the participant commit or abort accordingly. A
function prepare() was added in both middleware and resource manager for the phase one.
Function commit() was also adapted to Two Phase Commit protocol.

10

3.g Methods implementation on middleware adapted to distributed environment

1. Design of reserve* method

Firstly, in the RMI-based system, once the middleware gets a request from a
client, it checks existence of the give customer ID. Then, the middleware sends
a reserve request on the corresponding resource manager(e.g. reservecar to
Car-RM) through function call on the resource manager proxy . The
corresponding resource manager handles the remaining validation of the
reserve request, namely the existence of requested item. If the item can be
reserved, resource manager will update the local hash table of reservable items.
The system will propagate a boolean variable back to the client.

On the TCP socket based system, the customer validation is the same.
However, in order to update the customer information stored on middleware,
the middleware queries the price of the item before sending the reserve request.
The reason is that the resource manager can only send back a boolean
statement for the reserve request. If the reservation succeeds, middleware
customer information needs to be updated for the reserved item with queried
price. On the client side, there is no difference between RMI-based and TCP-
based system.

2. Design of deletecustomer method
We added an updateltem subroutine in resource manager as a function(RMI-
based) or request(TCP-based) for middleware to handle restoration of reserved
items when deleting a customer. After restoring all reserved items by the given
customer ID, middleware can safely delete the customer information. The
items then can be reserved by other customers.

3. Design of itinerary method

The first part of the implementation is merely to check the availability of all
flights and the car and/or room at the given location through remote method
invocation(RMI-based) or message passing(TCP-based) from middleware to
resource managers. This will prevent partial reservation issue where there is an
runtime error that something cannot be reserved but some flights are already
reserved. After successfully checked the availability, the middleware will call
reservation functions(RMI-based) or send reserve request messages(TCP-
based) to respective resource managers.

4 Concurrency control with Two Phase Lock

The concurrency control is achieved by Two Phase Lock and Two Phase Commit. A lock
guarantees exclusive use of a data item to a current transaction. In other words, transaction
T2 cannot write on a data item that is currently being used by transaction T1. A transaction
acquires a lock prior to data access; the lock is released (unlocked) when the transaction is

11

completed so that another transaction can lock the data item for its exclusive use. More
details of lock can be found in section 3.a. Besides Two Phase Lock, Two Phase Commit
protocol plays an important role in concurrency control as well. It guarantees that if a portion
of a transaction operation cannot be committed, all changes made at the other sites
participating in the transaction will be undone to maintain a consistent database state.

5 Correctness

5.a Basic functionalities of resource manager and middleware

To test the correctness of basic functionalities of the system, we have run several tests on
both interactive clients and non-interactive clients. Our test consists of multiple stages which
are in a sequential order.

First part of the test is whether the functionality of servers and middleware behaves as
expected for only one client connected to middleware. The tests on creating an new item and
querying both the number and price of an item are trivial and therefore omitted in this report.
The focus of this part is on the test of reserving an item, deleting a reservable item, deleting a
customer who has several reservations, and itinerary method. For the reserve function, both
RMI-based and TCP-based system behaves as expected. If the item actually can be reserved,
the system will reserve the item with correct data updates on both middleware and resource
manager without data corruption. If the item or customer does not exist (or the remaining
item is zero), the failure message will be returned to client application and the data segment
on both middleware and resource manager do not change. For the deletecustomer function,
after execution, the data on resource managers are updated and items become available to
reserve. The customer information is removed from middleware. For the itinerary function,
we have tested the case where (a) flight, room, or car does not exist (b) repeated flight
numbers (c) correct input arguments. The output behaves as expected.

The second stage of the test concentrate on the system architecture design. First of all, we
tried to connect multiple clients to our middleware and send requests concurrently. There is
no data corruption when multiple clients try to write on the same data segment. This is
handled by java built-in synchronized blocks on the data. Then, we tested the case where one
of the client is blocked. The trick we used is to intentionally create a malfunctional method
that takes a very long time to proceed in resource manager. One of the clients calls the
method indirectly and gets blocked from executing. At the same time, other clients in our
system are working without any interruption. Furthermore, we have tested the system
stability when some components are disconnected from the system i.e. force quit Car-RM
while other components are running. In this example, the system loses connection to car
resource manager without crashing the whole system. Moreover, a client that is waiting for
response from Car-RM gets blocked and hopefully can get a response later. Clients that are
not sending requests to Car-RM can run normally on other modules, e.g. reserve a room or
flight, query customer information, etc.

12

In addition to manual testing, we implemented a non-interactive client (client test) for testing
purpose. The client test also print out the current data on each RM and middleware (by
sending queries to middleware). One of the noticeable discoveries from automated testing is
that TCP-based build takes slightly longer time than RMI-based build. Our discussion on this
observation concludes that the remote method invocation is slightly faster than message
passing by socket.

5.b Two Phase Commit

No matter whether there is failure or not, Two Phase Commit(2PC) should keep data
consistent among all components. The test of 2PC without failures is straightforward. The
test involved several type of transactions such as transaction involving only one resource
manager and multiple resource managers, transaction ending with commit or abort,
transaction consisting of only write operations, only read operations and both read and write
operations. It turned out that the results were exactly as expected, which means the data is
always consistent among the components. The correctness of 2PC with failures will be
discussed in following subsections.

S.c Crash and Recovery at Resource Manager

The status of sites before failure can be recovered by scanning the log file. There are totally 5
possible cases for resource manager crash including (1) crash before client calling commit,
(2) crash after commit called(received vote requests) before sending answers, (3) crash after
sending answers but before receiving decisions, (4) crash after received decisions before
commit/abort, (5) crash after commit/abort. Due to the fact that Customer resource manager
resides within Middleware and depends on Transaction Manager, we separate the cases for
Customer resource manager with other Regular resource managers. For regular resource
managers, we have the following actions during recovery of the resource manager
respectively.

For case (1) at regular resource managers, we simply abort the transaction. This is because
that once the client invokes commit to the Middleware, the Middleware will send prepare to
each involved resource managers. Since the resource manager is crashed, it cannot send
answer to the transaction manager. As a result, all the resource managers will be aborted(as
all votes yes is false). Therefore, when the resource manager is recovering, it should abort
such transaction. For the Customer resource manager, if crash happens before 2PC is called,
there will be a transaction manager log for this transaction id with empty records. At recovery
stage, transaction manager will abort such transactions. For case (2) at regular resource
managers, the transaction is aborted since the answers received at transaction manager is not
all vote yes. At Customer resource manager, we handle this case in the same way. For case
(3) and (4) at regular resource manager, the transaction is not committed or aborted. The
action depends on the decision from transaction manager. Therefore, the way to handle case
(3) and (4) is to ask transaction manager to resend the decision and commit/abort
accordingly. However if the crash site is at Customer resource manager, the transaction
manager also crashes. Hence, as the ordering in the implementation, Customer is always the
first one who receives decision. Furthermore, transaction manager waits for Customer

13

resource manager’s response before sending more commit or abort to regular resource
managers. In this way, no other resource manager can commit/abort before Customer
resource manager. As a result, it is safe and consistent to abort the transaction at all sites. We
will see that case (3) and (4) is a special case for crash at transaction manager. For case (5) at
regular resource managers, recovery simply removes the log files as the operations are
already saved to stable storage after commit/abort. If the crash happens at customer resource
manager after customer committed/aborted, then the decision for this transaction is known
and some resource managers are committed/aborted already. Therefore, at recovery of
middleware, we can use the decision to finish the commit or abort at all sites.

In testing, we tested above cases in 3 modes by automated crashing. For the first case, this is
hard to automate without flags in basic methods e.g. addCars etc. We want to avoid massive
copy and paste crash code in those methods. However, it’s much easier to test by simply
force quitting the JVM process(Ctrl + C). In such way, we can set any crash point before
commit is called. For case (2) - (5), since they are inside an atomic commit operation at client
interface, we have 3 crash mode, namely mode 1 for case (2), mode 2 for case (3) and (4),
mode 3 for case (5) based on the action to take during recovery. Figure 5.1 shows the
correspondence between crash cases and crash modes (case 1 is omitted as it is not part of
2PC).

Resource manager

Wait for
VOTE-REQUEST

Case 2: crash mode 1

Vote NO Vote YES

Case 3: crash mode 2

Wait for decision

Case 4: crash mode 2

Case 4: crash mode 2

Aborted Committed

Case 5: crash mode 3 Case 5: crash mode 3

Figure 5.1: Crash and Recovery at Resource Manager

14

5.d Crash and Recovery at Transaction Manager

Transaction manager has more possible ways to crash. Nevertheless, it is relatively easier to
recover the transaction manager. We continue the numbering in part 5.c for different cases.
We have the following cases for transaction manager crash: (6) crash before sending vote
request (7) crash after receiving some replies but not all after sending vote request (8) crash
after receiving all replies but before deciding (9) crash after deciding but before sending
decision (10) crash after sending some but not all decisions (11) Crash after having sent all
decisions.

For the cases (6) - (9), since no resource manager actually commit or abort at this point, the
action during recovery should be aborting all active transactions. For case (10), depending on
the decision sent, if “SOME_COMMITTED?” is found in log, transaction manager should
commit the transaction at all site, while if “SOME_ABORTED” is found in log, transaction
manager should abort the transaction. For case (11), because Customer first receives the
decisions and transaction waits for Customer resource manager response, if all decisions are
sent, Customer resource manage must have done commit/abort. Therefore, it is safe to simply
delete the log, as we assume other resource managers are less likely to crash at the exact same
time. The 6 cases for transaction managers are automated through crash mode 4 - 9 as shown
in Figure 5.2.

Transaction manager

Case 6: crash mode 4

Send
VOTE-REQUEST

Wait for votes

Case 7: crash mode 5

Case 8: crash mode 6

Case 9: crash mode 7

Send ABORT Send COMMIT

Case 10: crash mode 8

Aborted Committed

Case 11: crash mode 9

Figure 5.2: Crash and Recovery at Transaction Manager

15

6 Difficulties

6.a Customer design

The first difficulty we have encountered in this project is the way to design customer related
functionalities. More specifically, the delete customer function is one of the most difficult
parts in project phase one. The difficulty comes from the requirement to release the reserved
items and update corresponding resource managers accordingly. As we do not have existed
interface for such operation, we implemented extra interface functionalities for this issue.

6.b Abort recovery

The next issue that we spent lots of time to solve is the abort recovery. Since in our design all
intermediate operations are written on the hash table in memory directly, on the occasion of
abort, we need to recover all previous operations done in memory. The way we address this
problem is to store a history for each transaction. The history is implemented by stack data
structure. There are two main reasons. First is that stacks preserve the order of executions.
This property is extremely important for transactions in which different ordering of
operations can lead to different results. The second reason is that stack is easy to reverse the
order in case we want to redo the operations (which is used in crash recovery where we need
to redo operations on the data after restored from disk).

6.c Resource Manager reconnection to Middleware

In project phase three, crash on any site can happen. Therefore, sometimes crash can isolate
some sites due to the dependency of existed system. For instance, if a car server crashed and
restarted, the middleware is not connected to the newly started car server, due to the fact that
at the start of middleware, the middleware seeks all resource managers through RMI and the
connection is fixed once middleware is started. In this case, we say that middleware instance
depends on the resource manager instances. Hence, even the crashed car server has
recovered, the middleware still connects to the old crashed instance of car server. Therefore,
an extra hand shaking protocol is required to rebuild the connection between recovered
resource manager and the middleware. We found that as long as the middleware resides and
runs on the same server, the resource manager can try to connect to that server with specific
port number. These informations can be provided at the time of restart. Therefore, once the
resource manager finds the middleware, it can ask the middleware to replace the old instance
of resource manager by the recovered one. In such way, RMI connection is recovered from
crash. On the other direction, if the middleware crashes and recovers, this will not be an
issue, because at the start of the middleware, it needs to find those resource managers
anyway.

6.d Handle Customer and Transaction Manager crash

Due to the fact that our customer and transaction manager resides on the same middleware,
crash of one component would automatically crash the other one. As a result, we have to
consider both cases at the same time. In our testing, there are totally six crash mode for
transaction manager and three crash mode for customer. This can causes very unpredictable

16

situations and decisions. To handle this issue, we modified the order of some executions to
make the execution behavior much more predictable. For example, in the original build we
use a for loop to loop through all resource managers involved in a transaction and commit
them one by one. However, this is very vague for us to say whether the customer component
is committed before the crash or after the crash if the crash happens during the loop. Without
knowing this subtle difference, we cannot make a good decision during recovery. This makes
the customer component a much more special case than the three other resource manager. As
a result, we eliminated such vagueness and forced the executions to be deterministic.

7 Performance evaluation

7.a Single client

We evaluated the marginal performance of the system by executing read only, write only and
read+write operations on a single RM and on all three RMs. Each transaction type involves
12 operations, so the transaction types are comparable in overhead. We also ended
transactions with both commits and aborts for every transaction type. In a single test of a
transaction type, after the system warmed up, we executed this transaction 1000 times. For
each transaction type, we did 10 tests. The average latencies of each transaction in
milliseconds are given below.

Results:
Transaction Type I RM 3 RMs
12 Read + Commit 16.554 24.278
12 Read + Abort 16.256 24.167
12 Write + Commit 16.615 26.325
12 Write + Abort 17.136 26.194
6 Read + 6 Write + Commit 16.530 25.074
6 Read + 6 Write + Abort 17.030 25.281

We observed from the table above that the write only transaction takes slightly longer time
than the read only transaction, and the average response time of read-write mixed transaction
type is somewhere in the middle of these two. This conclusion holds for both single RM and
three RMs case. Since the number of hops for abort and commit operations are the same in
our architecture, the response time will not be affected too much by this factor. The
experiment results also proved this inference.

17

Another fact that can be observed by looking at the table is that the average latencies of
transactions involving three RMs are obviously higher than corresponding transactions
involving one RM. The explanation of this fact can be that when dealing with three RMs, the
communication delay and the overhead of connection establishment are much longer.

In this project, since we did not interact with a real database system, the time spent on read
and write operations is not comparable to the time spent on communication delays.
Therefore, the time is mainly spent during communication processes in our system. That is
also the reason that different transaction types take very similar time to execute.

7.b Multiple clients

For performance evaluation of this part, we used the following parameters:
- A fixed number of clients: 5, 10, 20, 30, 50.
- The sleep interval is either [225, 275] or [475, 525].

We tested how the number of clients impacts the system performance in terms of latency,

CPU usage on the middleware and resource manager. The results are given in Figure 7.1, 7.2,
7.3 and 7.4 respectively.

Latency vs. Number of Clients

B Sleep =250

Latency (ms)
o

>— Sleep =500

Figure 7.1 Latency vs. Number of Clients

18

From Figure 7.1, we observed that the latency time grows almost linearly with the number of
clients before the number of clients reaching 30. After the number of clients exceeds 30, the
latency time grows sharply if the sleep interval is [225, 275], which is to be seen as the
saturation point of this system. To make the results more straightforward, we plotted Figure
7.2 which shows the relationship between latency and load injected. When the load injected is
around 80, the latency has an sharp increase. Therefore, load injected = 80 is the saturation
point of the system. Figure 4 is consistent with Figure 7.1.

Latency vs. Load injected

—O— Latency

Latency (ms)
N

40 60 B0

Figure 7.2 Latency vs. Load Injected

From Figure 7.3 and 7.4, we observed that the Middleware CPU usage and Resource
manager grows as the number of clients. However the percentage of CPU usage on
middleware is much higher than resource manager given that the resource manager and
middleware ran on the same CPU model. This observation shows that the CPU on the
middleware is the bottleneck of our distributed system. The throughput of the system is
largely restricted by the computation ability of the middleware.

19

140

120

100

B0

CPU usage (%)

40

20

CPU usage (%)
-~

Middleware CPU usage vs. Number of Clients

5 10 20 30 50

Figure 7.3 Middleware CPU usage vs. Number of Clients

Resource Manager CPU usage vs. Number of Clients

5 10 20 30 50

Figure 7.4 Resource Manager CPU usage vs. Number of Clients

—O— Sleep =250

—8—Sleep =500

—O— Sleep =250

—#—Sleep =500

20

