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1 General design and architecture 
 
1.a RMI-based system architecture and middleware design 
Figure 1.1 shows the RMI-based system architecture.  

 
        Figure 1.1 RMI-based Travel Reservation System 

 
Flight, car and room data are stored separately on three Resource Manager servers while the 
customer data is stored on the middleware. Besides, each RM server holds a registry 
correspond to its service. The registry of customer class is keeped on the middleware. The 
middleware knows the server name and port number of each Resource Manager. When the 
middleware is launched, it automatically looks up the registry on each Resource Manager and 
creates a proxy for all remote objects on that RM. Middleware also creates a registry for 
customer remote objects. The clients know the server name and port number of middleware. 
When a client is launched, it will do the same thing as middleware does and create a proxy 
for all the remote objects on middleware. In this way, we get the clients and servers 
communicate through a global middleware. The Transaction Manager, Lock Manager and 
Thread Pool were designed for concurrency control which we talk in Components and 
features implementation section. Figure 1.2 shows the working flow of a complete transaction 
in our distributed system. We took command ‘newroom’ as an example. 
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    Figure 1.2 Add a new room example 
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1.b  TCP-based system architecture and middleware design 
Figure 1.3 shows the TCP-based system architecture. 

 
Figure 1.3. TCP-based Travel Reservation System 

 
The basic structure of TCP-based system is very similar to the RMI-based version. The flight, 
car and room is handled separately on three Resource Manager while the customer resides on 
the middleware. The servers and middleware are multi-threaded. The server is listening 
requests on a port. When a request arrives, the server creates a new socket and passes it as a 
parameter to the new created thread. This way, a connection between server and client is 
established in the thread and the newly created socket gives the server destination 
information. The implementation of middleware is more complicated. It not only has to 
handle the request from client as the server does, but also need to create three sockets for the 
Resource Manager respectively in a thread (we assumed that the middleware knows the 
server name and port when it is launched). Therefore, each middleware thread has one server 
socket connected to client and three sockets connected to RMs. Once we have all the sockets 
created, we can bind data streams on the sockets and send query through the data streams to 
achieve communication between clients and servers. We did not implement concurrency 
control for this system because the phase 2 and 3 was based only on the RMI-based system. 
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1.c Customer design 
We implemented customer functions and stored customer data on middleware server in both 
systems. The main reason we designed the system this way is that we can reduce data transfer 
frequency and improve system performance compared to handling the customer by an 
additional server. When doing operations corresponding to customers like reserveflight, 
reservecar, reserveroom and deletecustomer, we need to query data from multiple resource 
managers, centralize these data on middleware and then forward the processed data back to 
the resource managers. In our system, we only need to store the processed customer data 
locally on the middleware. If the customer is handled by an additional server, we will have to 
forward it through WAN. The data transfer speed through hard drives is much faster than the 
speed through WAN, thus we can make sure that the system performs better under this 
architecture. 
 
2 Data design 
 
2.a Log file 
We implemented a serializable class called LogFile for convenience of saving log to and 
loading log from disk. The structure of LogFile is very simple. It contains a transaction id 
which is used to notify which transaction this log belongs to and a ArrayList of string that 
contains the necessary records. 
 
2.b Transaction 
Transaction is also implemented as a class. Each transaction contains a transaction id, a 
operation counter which tracks the number of operations that occurs in this transaction, a 
stack of vectors of string used to save the transaction history. It also has three functions 
addHistory(), addSubHistory(), pop() that are responsible for managing the transaction 
history. 
 
2.c Master record 
For convenience of transferring data between memory and disk, master record of shadowing 
is also maintained in a serializable class called MasterRecord. A flag indicating the active 
copy and the transaction last committed are maintained in this class.  
 
3 Components and features implementation 
 
3.a  Centralized lock manager 
In our project, we decided to use a singleton lock manager that has all lock information 
including customer, cars, flights, and rooms. The reason to use a single lock manager is that 
whenever the middleware needs to request a lock, it only needs to request it locally. This 
reduces unnecessary hops between middleware and resource managers. The details of 
implementation of lock manager will be discussed in three parts. 
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1. Lock conversion 
The first task in phase 2 is to add lock conversion to the given lock manager 
implementations. The two functions modified are Lock() and LockConflict(). In 
Lock function, if bConvert is set to 0, then we remove the existing READ lock 
and add new WRITE lock on the data item. In LockConflict function, in the case 
that the transaction already has a lock and is requesting a WRITE lock, there are 
two cases to analyze i.e. the type of lock already holding. If the transaction 
already had a READ lock, we need to check if there are other transaction holding 
any READ lock on the item(No other transactions can have WRITE lock). If 
some other transactions also had READ lock, LockConflict returns true. 
Otherwise, bConvert is set to 0 and function returns false. If the transaction 
already has a WRITE lock, new WRITE lock request is redundant and the 
functions throws RedundantLockRequestException. Then, lock function catches 
the redundant lock exception and returns true, i.e. ignores the new lock request. 

 
2. Requesting lock from transaction manager 

Whenever a client sends request on any data items, the middleware invokes 
requestLock() to transaction manager. Then, transaction manager calls Lock() to 
Lock manager. Depending on whether there is a lock conflict, the lock manager 
will return true for lock can be granted, return false if some arguments are 
invalid, or wait for lock conflicts to be solved(with possibility of deadlock 
existence). The requestLock() function also increments the operation counter of 
the given transaction ID. This helps to reset the time-to-live timer, which will be 
discussed in 3.c. 
 

3. Deadlock 
The lock manager handles deadlock through timeout mechanism. That is, 
whenever there is a lock conflict, the lock manager wait until the lock is released 
or the timeout is reached. In the meanwhile, the client is blocked. If the 
transaction has been waiting for a period longer than timeout period, the lock 
manager throws deadlock exception. The transaction manager catches the 
deadlock exception and aborts the transaction which caused the deadlock 
exception.  

 
3.b  Transaction manager 
The transaction manager is a singleton object inside the middleware server, it maintains an 
active transaction hash table mapping transaction ids to transaction objects. This allows the 
middleware to know which transaction that a operation belongs to. Transaction class consists 
of the transaction identifier, operation counters, and a stack of transaction histories. The 
operation counter is used for time-to-live mechanism. The stack is used for the recovery 
process if the transaction is aborted. The reason to use stack is that the last operation is 
recovered first. Transaction manager also enables extra features for middleware including 
start(), commit(), abort() and shutdown().  
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The start function increments the transaction counter and returns the current transaction 
counter as a new transaction id. Moreover, the start function also creates a transaction object 
that is stored in hash table and starts a TimeThread for time-to-live mechanism. Since we are 
using strict 2PL, the commit function is implemented as a one-phase commit.  
 
The commit function checks the validity of transaction id. If the id is valid, the transaction 
manager sends commit request to related Resource managers. The Resource managers 
execute the commit function locally and update transaction hash table. Afterwards, in 
transaction manager, the commit function unlocks all the locks that transaction holds, and 
removes it from active transaction hash table. 
 
For the abort function, middleware and resource managers handle the record recovery using 
the local transaction history stack and transaction manager does the validation check and 
unlocks locked data items. 
 
For the shutdown function, the transaction manager checks if there are any active 
transactions. If there is no active transactions, the transaction manager returns true and the 
middleware shuts down other resource managers and middleware. An extra thread returns 
true to client if middleware shutdown succeeds.  
 
3.c  Time-to-live mechanism 
For each transaction, we start a separate thread(TimeThread) to inspect the time-to-live 
values of that transaction. If one has been idle for more than 60 seconds, the transaction will 
be aborted. We keep an operation counter in each transaction. When an operation involving 
this transaction is carried out, the operation counter is incremented and the time to live is 
reset. The TimeThread keeps checking whether the operation counter is incremented and time 
to live expires. If the operation counter is not incremented within the time to live, then the 
transaction is aborted. 
 
3.d  Shadowing 
Shadowing is implemented the same way as we have seen in class. We keep two copies of 
database: one committed version and one working version. We also keep a master record that 
indicates the latest committed version. Master record is updated every time the transaction is 
successfully committed. Let’s say we have two copies A and B of database and A is the 
where the master record currently point to. Upon execution of T, we update main-memory 
copy. Upon commit request of T, We first write main-memory copy to B and then write 
master with pointer to B and transaction id to disk. Upon abort request of T, we simply 
discard main-memory copy and read A into main memory. If crash before writing master 
record, A remains latest committed copy. After restart of system, A will be loaded into main 
memory and T will abort. If crash after commit of T but before commit of any other 
transaction, master record contains T and points to B. Upon restart of system, B is loaded into 
main memory. 
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3.e  Logging 
To recover from crash, the processors must know their state to be able to tell others whether 
they have reached a decision and the status must be available after failure and restart. This is 
achieved by writing a log record to disk for every state change in protocol and every 
transaction. As mentioned in 2.a, the log file is saved as a serializable object in the disk which 
contains states and a transaction id. To make the log easier to use for recovery, we keep a log 
per transaction per site. For example, if we have a transaction T with transaction id 5 
involving two resource managers Car and Room, before T is successfully committed or 
aborted, there will be three log files existing in our system. One named ‘Car_5.log’ is on the 
Car RM, one named ‘Room_5.log’ is on the Room RM and one named ‘TM_5.log’ is on the 
middleware which is the log of Transaction Manager. The log file will be automatically 
deleted from the disk once the transaction is completed, namely, either abort or commit. 
Figure 3.1 and 3.2 show when and what status is written into the log file for resource 
managers and coordinators(transaction manager) during Two Phase Commit process. The 
details about how the system recover from crash with the help of the log file will be 
introduced in 5.c and 5.d. 

 
Figure 3.1 Log points on resource manager for Two Phase Commit 
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Figure 3.2 Log points on transaction manager for Two Phase Commit 

 
 
3.f  Two Phase Commit 
We will briefly describe how Two Phase Commit works here, since it is clearly explained in 
slides. Firstly, the coordinator (transaction manager) starts the commit process and sends a 
VOTE-REQUEST to all participants (resource manager). Upon receiving a VOTE-
REQUEST, the participants sends a vote with YES or No. If vote is NO, it aborts the 
transaction locally. On the coordinator side, if all vote YES, it sends COMMIT decision to all 
participants and commits locally, otherwise, it sends ABORT decision to all participants and 
aborts locally. Upon receiving decision, the participant commit or abort accordingly. A 
function prepare() was added in both middleware and resource manager for the phase one. 
Function commit() was also adapted to Two Phase Commit protocol. 
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3.g  Methods implementation on middleware adapted to distributed environment 
 

1. Design of reserve* method 
Firstly, in the RMI-based system, once the middleware gets a request from a 
client, it checks existence of the give customer ID. Then, the middleware sends 
a reserve request on the corresponding resource manager(e.g. reservecar to 
Car-RM) through function call on the resource manager proxy . The 
corresponding resource manager handles the remaining validation of the 
reserve request, namely the existence of requested item. If the item can be 
reserved, resource manager will update the local hash table of reservable items. 
The system will propagate a boolean variable back to the client. 
On the TCP socket based system, the customer validation is the same. 
However, in order to update the customer information stored on middleware, 
the middleware queries the price of the item before sending the reserve request. 
The reason is that the resource manager can only send back a boolean 
statement for the reserve request. If the reservation succeeds, middleware 
customer information needs to  be updated for the reserved item with queried 
price. On the client side, there is no difference between RMI-based and TCP-
based system. 

 
2. Design of deletecustomer method 

We added an updateItem subroutine in resource manager as a function(RMI-
based) or request(TCP-based) for middleware to handle restoration of reserved 
items when deleting a customer. After restoring all reserved items by the given 
customer ID, middleware can safely delete the customer information. The 
items then can be reserved by other customers. 

 
3. Design of itinerary method 

The first part of the implementation is merely to check the availability of all 
flights and the car and/or room at the given location through remote method 
invocation(RMI-based) or message passing(TCP-based) from middleware to 
resource managers. This will prevent partial reservation issue where there is an 
runtime error that something cannot be reserved but some flights are already 
reserved. After successfully checked the availability, the middleware will call 
reservation functions(RMI-based) or send reserve request messages(TCP-
based) to respective resource managers. 

 
4 Concurrency control with Two Phase Lock 
 
The concurrency control is achieved by Two Phase Lock and Two Phase Commit. A lock 
guarantees exclusive use of a data item to a current transaction. In other words, transaction 
T2 cannot write on a data item that is currently being used by transaction T1. A transaction 
acquires a lock prior to data access; the lock is released (unlocked) when the transaction is 
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completed so that another transaction can lock the data item for its exclusive use. More 
details of lock can be found in section 3.a. Besides Two Phase Lock, Two Phase Commit 
protocol plays an important role in concurrency control as well. It guarantees that if a portion 
of a transaction operation cannot be committed, all changes made at the other sites 
participating in the transaction will be undone to maintain a consistent database state.  
 
5 Correctness 
 
5.a Basic functionalities of resource manager and middleware 
To test the correctness of basic functionalities of the system, we have run several tests on 
both interactive clients and non-interactive clients. Our test consists of multiple stages which 
are in a sequential order. 
 
First part of the test is whether the functionality of servers and middleware behaves as 
expected for only one client connected to middleware. The tests on creating an new item and 
querying both the number and price of an item are trivial and therefore omitted in this report. 
The focus of this part is on the test of reserving an item, deleting a reservable item, deleting a 
customer who has several reservations, and itinerary method. For the reserve function, both 
RMI-based and TCP-based system behaves as expected. If the item actually can be reserved, 
the system will reserve the item with correct data updates on both middleware and resource 
manager without data corruption. If the item or customer does not exist (or the remaining 
item is zero), the failure message will be returned to client application and the data segment 
on both middleware and resource manager do not change. For the deletecustomer function, 
after execution, the data on resource managers are updated and items become available to 
reserve. The customer information is removed from middleware. For the itinerary function, 
we have tested the case where (a) flight, room, or car does not exist (b) repeated flight 
numbers (c) correct input arguments. The output behaves as expected. 
 
The second stage of the test concentrate on the system architecture design. First of all, we 
tried to connect multiple clients to our middleware and send requests concurrently. There is 
no data corruption when multiple clients try to write on the same data segment. This is 
handled by java built-in synchronized blocks on the data. Then, we tested the case where one 
of the client is blocked. The trick we used is to intentionally create a malfunctional method 
that takes a very long time to proceed in resource manager. One of the clients calls the 
method indirectly and gets blocked from executing. At the same time, other clients in our 
system are working without any interruption. Furthermore, we have tested the system 
stability when some components are disconnected from the system i.e. force quit Car-RM 
while other components are running. In this example, the system loses connection to car 
resource manager without crashing the whole system. Moreover, a client that is waiting for 
response from Car-RM gets blocked and hopefully can get a response later. Clients that are 
not sending requests to Car-RM can run normally on other modules, e.g. reserve a room or 
flight, query customer information, etc. 
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In addition to manual testing, we implemented a non-interactive client (client_test) for testing 
purpose. The client_test also print out the current data on each RM and middleware (by 
sending queries to middleware). One of the noticeable discoveries from automated testing is 
that TCP-based build takes slightly longer time than RMI-based build. Our discussion on this 
observation concludes that the remote method invocation is slightly faster than message 
passing by socket. 
 
5.b Two Phase Commit 
No matter whether there is failure or not, Two Phase Commit(2PC) should keep data 
consistent among all components. The test of 2PC without failures is straightforward. The 
test involved several type of transactions such as transaction involving only one resource 
manager and multiple resource managers, transaction ending with commit or abort, 
transaction consisting of only write operations, only read operations and both read and write 
operations. It turned out that the results were exactly as expected, which means the data is 
always consistent among the components. The correctness of 2PC with failures will be 
discussed in following subsections. 
 
5.c Crash and Recovery at Resource Manager 
The status of sites before failure can be recovered by scanning the log file. There are totally 5 
possible cases for resource manager crash including (1) crash before client calling commit, 
(2) crash after commit called(received vote requests) before sending answers, (3) crash after 
sending answers but before receiving decisions, (4) crash after received decisions before 
commit/abort, (5) crash after commit/abort. Due to the fact that Customer resource manager 
resides within Middleware and depends on Transaction Manager, we separate the cases for 
Customer resource manager with other Regular resource managers. For regular resource 
managers, we have the following actions during recovery of the resource manager 
respectively. 
 
For case (1) at regular resource managers, we simply abort the transaction. This is because 
that once the client invokes commit to the Middleware, the Middleware will send prepare to 
each involved resource managers. Since the resource manager is crashed, it cannot send 
answer to the transaction manager. As a result, all the resource managers will be aborted(as 
all_votes_yes is false). Therefore, when the resource manager is recovering, it should abort 
such transaction. For the Customer resource manager, if crash happens before 2PC is called, 
there will be a transaction manager log for this transaction id with empty records. At recovery 
stage, transaction manager will abort such transactions. For case (2) at regular resource 
managers, the transaction is aborted since the answers received at transaction manager is not 
all vote yes. At Customer resource manager, we handle this case in the same way. For case 
(3) and (4) at regular resource manager, the transaction is not committed or aborted. The 
action depends on the decision from transaction manager. Therefore, the way to handle case 
(3) and (4) is to ask transaction manager to resend the decision and commit/abort 
accordingly. However if the crash site is at Customer resource manager, the transaction 
manager also crashes. Hence, as the ordering in the implementation, Customer is always the 
first one who receives decision. Furthermore, transaction manager waits for Customer 
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resource manager’s response before sending more commit or abort to regular resource 
managers. In this way, no other resource manager can commit/abort before Customer 
resource manager. As a result, it is safe and consistent to abort the transaction at all sites. We 
will see that case (3) and (4) is a special case for crash at transaction manager. For case (5) at 
regular resource managers, recovery simply removes the log files as the operations are 
already saved to stable storage after commit/abort. If the crash happens at customer resource 
manager after customer committed/aborted, then the decision for this transaction is known 
and some resource managers are committed/aborted already. Therefore, at recovery of 
middleware, we can use the decision to finish the commit or abort at all sites.  
 
In testing, we tested above cases in 3 modes by automated crashing. For the first case, this is 
hard to automate without flags in basic methods e.g. addCars etc. We want to avoid massive 
copy and paste crash code in those methods. However, it’s much easier to test by simply 
force quitting the JVM process(Ctrl + C). In such way, we can set any crash point before 
commit is called. For case (2) - (5), since they are inside an atomic commit operation at client 
interface, we have 3 crash mode, namely mode 1 for case (2), mode 2 for case (3) and (4), 
mode 3 for case (5) based on the action to take during recovery. Figure 5.1 shows the 
correspondence between crash cases and crash modes (case 1 is omitted as it is not part of 
2PC).  

 
Figure 5.1: Crash and Recovery at Resource Manager 
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5.d Crash and Recovery at Transaction Manager 
Transaction manager has more possible ways to crash. Nevertheless, it is relatively easier to 
recover the transaction manager. We continue the numbering in part 5.c for different cases. 
We have the following cases for transaction manager crash: (6) crash before sending vote 
request (7) crash after receiving some replies but not all after sending vote request (8) crash 
after receiving all replies but before deciding (9) crash after deciding but before sending 
decision (10) crash after sending some but not all decisions (11) Crash after having sent all 
decisions. 
 
For the cases (6) - (9), since no resource manager actually commit or abort at this point, the 
action during recovery should be aborting all active transactions. For case (10), depending on 
the decision sent, if “SOME_COMMITTED” is found in log, transaction manager should 
commit the transaction at all site, while if “SOME_ABORTED” is found in log, transaction 
manager should abort the transaction. For case (11), because Customer first receives the 
decisions and transaction waits for Customer resource manager response, if all decisions are 
sent, Customer resource manage must have done commit/abort. Therefore, it is safe to simply 
delete the log, as we assume other resource managers are less likely to crash at the exact same 
time. The 6 cases for transaction managers are automated through crash mode 4 - 9 as shown 
in Figure 5.2.  

 
Figure 5.2: Crash and Recovery at Transaction Manager 
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6 Difficulties 
 
6.a Customer design 
The first difficulty we have encountered in this project is the way to design customer related 
functionalities. More specifically, the delete customer function is one of the most difficult 
parts in project phase one. The difficulty comes from the requirement to release the reserved 
items and update corresponding resource managers accordingly. As we do not have existed 
interface for such operation, we implemented extra interface functionalities for this issue.  
 
6.b Abort recovery 
The next issue that we spent lots of time to solve is the abort recovery. Since in our design all 
intermediate operations are written on the hash table in memory directly, on the occasion of 
abort, we need to recover all previous operations done in memory. The way we address this 
problem is to store a history for each transaction. The history is implemented by stack data 
structure. There are two main reasons. First is that stacks preserve the order of executions. 
This property is extremely important for transactions in which different ordering of 
operations can lead to different results. The second reason is that stack is easy to reverse the 
order in case we want to redo the operations (which is used in crash recovery where we need 
to redo operations on the data after restored from disk). 
 
6.c Resource Manager reconnection to Middleware 
In project phase three, crash on any site can happen. Therefore, sometimes crash can isolate 
some sites due to the dependency of existed system. For instance, if a car server crashed and 
restarted, the middleware is not connected to the newly started car server, due to the fact that 
at the start of middleware, the middleware seeks all resource managers through RMI and the 
connection is fixed once middleware is started. In this case, we say that middleware instance 
depends on the resource manager instances. Hence, even the crashed car server has 
recovered, the middleware still connects to the old crashed instance of car server. Therefore, 
an extra hand shaking protocol is required to rebuild the connection between recovered 
resource manager and the middleware. We found that as long as the middleware resides and 
runs on the same server, the resource manager can try to connect to that server with specific 
port number. These informations can be provided at the time of restart. Therefore, once the 
resource manager finds the middleware, it can ask the middleware to replace the old instance 
of resource manager by the recovered one. In such way, RMI connection is recovered from 
crash. On the other direction, if the middleware crashes and recovers, this will not be an 
issue, because at the start of the middleware, it needs to find those resource managers 
anyway. 
 
6.d Handle Customer and Transaction Manager crash 
Due to the fact that our customer and transaction manager resides on the same middleware, 
crash of one component would automatically crash the other one. As a result, we have to 
consider both cases at the same time. In our testing, there are totally six crash mode for 
transaction manager and three crash mode for customer. This can causes very unpredictable 
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situations and decisions. To handle this issue, we modified the order of some executions to 
make the execution behavior much more predictable. For example, in the original build we 
use a for loop to loop through all resource managers involved in a transaction and commit 
them one by one. However, this is very vague for us to say whether the customer component 
is committed before the crash or after the crash if the crash happens during the loop. Without 
knowing this subtle difference, we cannot make a good decision during recovery. This makes 
the customer component a much more special case than the three other resource manager. As 
a result, we eliminated such vagueness and forced the executions to be deterministic. 
 
7 Performance evaluation 
 
7.a Single client 
We evaluated the marginal performance of the system by executing read only, write only and 
read+write operations on a single RM and on all three RMs. Each transaction type involves 
12 operations, so the transaction types are comparable in overhead. We also ended 
transactions with both commits and aborts for every transaction type. In a single test of a 
transaction type, after the system warmed up, we executed this transaction 1000 times. For 
each transaction type, we did 10 tests. The average latencies of each transaction  in 
milliseconds are given below. 
 
Results:  
 

Transaction Type 1 RM 3 RMs 

12 Read + Commit 16.554 24.278 

12 Read + Abort 16.256 24.167 

12 Write + Commit 16.615 26.325 

12 Write + Abort 17.136 26.194 

6 Read + 6 Write + Commit 16.530 25.074 

6 Read + 6 Write + Abort 17.030 25.281 

 
We observed from the table above that the write only transaction takes slightly longer time 
than the read only transaction, and the average response time of read-write mixed transaction 
type is somewhere in the middle of these two. This conclusion holds for both single RM and 
three RMs case. Since the number of hops for abort and commit operations are the same in 
our architecture, the response time will not be affected too much by this factor. The 
experiment results also proved this inference. 
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Another fact that can be observed by looking at the table is that the average latencies of 
transactions involving three RMs are obviously higher than corresponding transactions 
involving one RM. The explanation of this fact can be that when dealing with three RMs, the 
communication delay and the overhead of connection establishment are much longer. 
 
In this project, since we did not interact with a real database system, the time spent on read 
and write operations is not comparable to the time spent on communication delays. 
Therefore, the time is mainly spent during communication processes in our system. That is 
also the reason that different transaction types take very similar time to  execute. 
 
7.b Multiple clients 
For performance evaluation of this part, we used the following parameters: 

- A fixed number of clients: 5, 10, 20, 30, 50. 
- The sleep interval is either [225, 275] or [475, 525]. 

 
We tested how the number of clients impacts the system performance in terms of latency, 
CPU usage on the middleware and resource manager. The results are given in Figure 7.1, 7.2, 
7.3 and 7.4 respectively. 
 
 

 
Figure 7.1  Latency vs. Number of Clients 
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From Figure 7.1, we observed that the latency time grows almost linearly with the number of 
clients before the number of clients reaching 30. After the number of clients exceeds 30, the 
latency time grows sharply if the sleep interval is [225, 275], which is to be seen as the 
saturation point of this system. To make the results more straightforward, we  plotted Figure 
7.2 which shows the relationship between latency and load injected. When the load injected is 
around 80, the latency has an sharp increase. Therefore, load injected = 80 is the saturation 
point of the system. Figure 4 is consistent with Figure 7.1. 
 
 

 
Figure 7.2  Latency vs. Load Injected 

 
 
From Figure 7.3 and 7.4, we observed that the Middleware CPU usage and Resource 
manager grows as the number of clients. However the percentage of CPU usage on 
middleware is much higher than resource manager given that the resource manager and 
middleware ran on the same CPU model. This observation shows that the CPU on the 
middleware is the bottleneck of our distributed system. The throughput of the system is 
largely restricted by the computation ability of the middleware. 
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Figure 7.3  Middleware CPU usage vs. Number of Clients 

 

 
Figure 7.4  Resource Manager CPU usage vs. Number of Clients 

 


