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Abstract—Biped balance control strategy is difficult to design
as biped locomotion suffers from high-dimensional action spaces,
underactuated dynamics, and unstable joint controls. We propose
a generalized balance control strategy that can synthesize robust
biped walking locomotion. The generalization consists of two
parts, a coordinated joint control and generalized ground height
feedback. We also conduct principle component analysis on gen-
erated locomotion to further improve the state used in finite state
machine. Systems employing proportional-derivative controllers
face the trade-off between simulation efficiency and effectiveness.
We explore and exploit a stable variant of proportional-derivative
controller to enhance the simulation process. Our main contri-
butions are improving the robustness of biped control against
upward steps in real time, and generating more torque-efficient
and smoother simulations.

I. INTRODUCTION

Locomotion is an essential part of character animations
and movie creation. This is often achieved by using motion
captured data or key frame animators. However, it does not
scale well in more realistic situations. For instance, it is
hardly seen that two people walk in the exactly same way on
an unexpected terrain environment. As a result, algorithmic
approaches is more capable of generating a set of motions
instead of individual motions. One way to solve this problem
is to develop a physical-based control strategy that generates
different poses and gaits in real time. In this project, we focus
on biped locomotion as it is useful to animate human-like
creatures in either video games or animated movies. More
specifically, biped locomotion can be difficult to produce due
to its instability, large number of degree of freedom, and high-
dimensional dynamic system.

The general goal of this project is to explore some mod-
ifications to the previous SIMBICON controller [1]. Unlike
passive physical-based simulation of cloth or deformable ob-
jects, character control is active. SIMBICON actively controls
the swing-hip angle to maintain balance. We generalize the
linear feedback strategy to all joints instead of only swing
hip, as human beings actively control all joints to walk.
Although SIMBICON is very robust, it fails when the terrain
contains unanticipated upward steps. We address this issue
by introducing ground height feedback to the generalized
linear feedback system. This improvement demonstrates the
usefulness of external information in motion control. The
controller no longer passively adapts to environment changes,
but actively reacts to sensory information.

Besides the enhancement of controller performance, we
investigate the characteristics of the motion generated by SIM-
BICON controller. Principle component analysis (PCA) is a
well-known technique for data processing, model analysis and
dimensionality reduction. We apply PCA on data simulated
by SIMBICON. The eigenvector basis of PCA shows some
interesting poses that can be used in kinematic animation or
FSM state design.

Lastly, we explores the possibility of replacing con-
ventional proportional-derivative (PD) controllers with sta-
ble proportional-derivative (SPD) controllers [2]. Stable
proportional-derivative controllers can provide stable simula-
tion in the case of large controller gains and large simulation
time steps. We also show that SPD can produce smooth and
torque efficient simulations.

II. RELATED WORK

Many methods have been proposed to create realistic and
physically valid motion in Computer Graphics literatures.
Optimization methods are an appealing way to synthesize
realistic motion. However, the dimensionality of search space
makes optimizers hard to solve the problem for complex
characters such as humans. Dimensionality reduction based on
existing motion capture database was introduced by Safonova
et al. [3]. Typical dimension reduction technique such as
PCA was employed in their experiments. They showed that
representations with five to ten dimensions can create animated
motion with very small errors.

Later, Yin et al. developed SIMple BIped CONtrol (SIMBI-
CON) strategy to animate biped characters [1]. The controller
consists of four parts. The first is a finite state machine
with states of poses driven by a PD controller. The second
part is virtual PD control on torso and swing hip. The
third part is balance feedback to maintain balance. The last
is feedback error learning that reduces the controller gains
in simulation. SIMBICON shows its robustness in terms of
unexpected downward steps, terrain slope changes and push
forces in all direction. Coros et al. developed generalized biped
walking control inspired by SIMBICON and other related
work such as Jacobian transpose [4] and inverted pendu-
lum [5]. They demonstrated the generalization across different
gait parameters, style, characters, and tasks. In the vein of
feedback policies, Ding et al. proposed a method for searching
low-dimensional linear feedback policies in replacement of



manually designed feedback strategies [6]. In contrast to online
methods, sample based control strategy shows success in
offline biped control [7]. Sample based optimization does
not require an explicit derivative computation comparing with
gradient based approaches.

Modal analysis can be useful in character animation. Kry et
al. applied modal analysis based on the physical information
of virtual animals [8]. Modal vibrations are obtained by solv-
ing the generalized eigenvalue problem. They showed that a
locomotion controller can be constructed from a small number
of modal vibrations with low frequencies either manually or
automatically with a set of heuristics. Using modal vibrations
alone can not generate robust kinematic locomotion due to
lack of balance control. Jain and Liu further explored the
problem in modal space and formulated the problem into long-
horizon planning [9]. They identified the two main advantages
of modal analysis: Independent control and Model reduction.
Nunes et al. demonstrated that robust locomotion based on
modal vibrations can be achieved by an addition of optimiza-
tion routine [10].

With tremendous development of machine learning tech-
niques in recent years, complex locomotion problems can be
solved with reinforcement learning on action space. Peng et al.
employed reinforcement learning [11] and deep reinforcement
learning [12] to create 2D locomotion that is robust against
gaps, walls, and steps. Later, two level hierarchical deep rein-
forcement learning was adopted to train dynamic locomotion
skills including following trails, navigation through various
obstacles, and dribbling a soccer ball [13].

Simulation stability and efficiency is another important topic
in character animations. In the context of forward simulation,
penalty methods can enforce constraints by virtual penalty
forces based on the deviation from constraints [14]. Similar to
penalty methods, PD controllers use a virtual force to reduce
the deviation of current state from target state. However,
penalty springs using high gains to precisely maintain the
constraints introduces numerical instability [15]. High-gain PD
controllers suffer from numerical instability as well. Several
techniques have been proposed to improve PD controllers. Yin
et al. [16] modeled muscle forces as a combination of feed
forward forces based on motion captured data and low gain
feedback control. Weinstein et al. [17] proposed a novel PD
variation that decouples each degree of freedom and calculates
analytical solutions regardless of global effects. Tan et al. [2]
presented a stable PD formulation that uses deviations in the
next time step.

III. METHODS
A. SIMBICON Review

As SIMBICON is the cornerstone of this project, we review
its methods and components first. The main control strategy
consists of three parts: a finite state machine, a control of torso
and swing hip, and a balance feedback term.

SIMBICON starts with a finite state machine or pose
graph, where the poses are represented by the target angles
with respect to parent joins. Transitions happen after a fixed

duration of time or after a new foot contact. PD controllers,
7 = ky(04 — 0) — kab, drive each joint toward to their target
angles.

Without notion of balance, the pose graph cannot produce
a robust locomotion. Some modifications are added to ensure
robustness in terms of unexpected changes in terrains and
perturbations by forward and backward push on torso. The
torso and swing hip have targeted angles expressed with
respect to world frame instead of their parent joints. This
helps control the orientation of torso in world frame. A virtual
PD controller working in world coordinates computes the net
torso torque Tiorso. Moreover, the swing foot positioning is
decoupled from the current torso pitch angle. This is achieved
by a swing-hip controller works in world frame to calculate
swing-hip torque 7. Since only internal torques are allowed,
the stance-hip torque, 74, is treated as free variable, i.e.
TA = —Ttorso — TB-

In addition, a balance feedback term continuously modifies
the swing hip target angle as a linear function of the center
of mass position and velocity. The balance feedback law is
described as the following:

Aby = cqd + c,v, (1

where Af; = 04 — 049 is the difference between the target
angle, 04, used by PD controllers and the fixed target angle,
040, specified by the state machine, d is the horizontal distance
from the stance ankle to the center of mass (COM) and v
is the velocity of the center of mass. The coefficient ¢4 and
¢, are called “balance feedback gain” parameters, which are
essential to maintain balance during low-speed gaits or in-
place stepping. The balance feedback gain parameters are
manually designed based on observations (details can be found
in Section 4 of the SIMBICON paper [1]).

The balance feedback in SIMBICON is an example of
general linear feedback described by Ding et al. [6], and can
be written

da = Mg - ds, 2)

where da = a — a, s = s — §, and My is a m x n full-
order feedback matrix. This assumes the existence of reference
control actions, a, and reference sensory observations, S. In
SIMBICON example, controlling the joint angle is the action,
while the position of stance foot is reference sensory observa-
tion and the COM position is current sensory observation. The
reference for velocity is O for a balanced biped. The balance
feedback gains form the feedback matrix, Mp = [cq ¢ ].

B. Ground Height Feedback

We observe that with only COM and velocity feedback
terms, SIMBICON can fail with unexpected upward steps.
Biped characters usually increase the swing hip angle if
an upward step is anticipated. This requires ground height
changes as an extra sensory feedback. Therefore, we define
the ground height change, h, as the maximum ground height
change from the stance foot to the position of expected swing
foot placement. The reason to take maximum instead of direct
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Fig. 1. The three components in generalized balance feedback law in the
Equation 4. This figure is a modified version of Figure 3(b) in SIMBICON
paper [1]

difference is to avoid small walls in between stance foot and
swing foot, in this case the direct difference is 0. Suppose that
the stance foot is at position (xg,yo), and the swing foot is
expected to be placed at (x71,y1), then h is obtained by
h = tm[g%](H(l‘o + dxt,yo + 0yt) — H(zo,%0)), (3)
€10,
where H(x,y) is the ground height function, dz = x1 — xo,
and dy = y; —yo. The feedback law in the Equation 1 therefore
becomes
Abg = cqd + cyv + cph, 4)

where ¢, is the gain on ground height feedback. Notice
that h satisfies the sensory observation definition, Js, in the
Equation 2 as it simplifies to h = max H(t) — H (zo, yo).

In general, we observe that the step sizes of SIMBICON
controllers with the same set of gain parameters are very
similar. Hence, the distance from (zo,y0) to (x1,y1) can be
estimated by averaging over all step sizes generated by the
same controller on a flat terrain. The direction from (o, yo)
to (z1,y1) is the same as the direction of current velocity.

C. Principle Component Analysis

Principle component analysis (PCA) is a statistical tech-
nique to find a set of linearly independent variables called
principle components from a set of observations of variables
that are possibly correlated. The first component in PCA has
the largest variance in the data set. The second component
shows the second largest variance and so on. The principle
components can be derived by singular value decomposition
on centralized data matrix, eigenvalue decomposition on sam-
ple covariance matrix, or iterative methods (normally used for
very high-dimensional sample space).

For high-dimensional joint control, PCA is a practical
procedure to reduce dimensionality by projection onto optimal
subspace, which is spanned by selected principle components
based on their eigenvalues. Since principle components show
the variance difference in their directions, each principle

components can be visualized and used for FSM target angle
construction.

Given a motion M, we can apply PCA to find the basis
of this motion. The motion M has a representation in the
form of M = M(t) = {p(t),Q(t)}, where p(t) is the root
position, and Q(t) = {q1(t)...¢n(t)} denotes all the joint
angles at time ¢. Hence, a motion M is a set of points in an
(n+1)-dimensional space. Since the position is not correlated
to any joint angles, we only apply PCA on the joint angles.
PCA can be computed either by iterative methods or direct
covariance eigenvalue decomposition. We use the later as the
multiplication in covariance computation does not generate
numerical instability based on our experiments.

Consider m sample frames of a motion M, the first
step is to centralize the sample data by the sample mean
Qm = >t Qs(t;)/m. Therefore, for each Q(t), we have
Q.(t) = Qs(t) — Qm- Then, we apply eigenvalue decom-
position on the sample covariance matrix of Q.(¢). Since
covariance matrix is symmetric, the eigenvector matrix is
orthogonal. As a result, we can construct a d-dimensional sub-
space spanned by the eigenvectors, {Bj ... Bg}. In general,
d is estimated by a standard heuristic [18], in which for
eigenvalues, A\; > Ao > ... > \,, d is the smallest number
such that Zd \

Li=1"" - 9.
S ®

The approximation of (Q(¢) is a linear combination of
eigenvectors,

?

Ot) = Qu + A1 (t)By + ... + Ag(t)Ba, ©6)

where {A;(t)... A4(t)} are scalar coefficients. This approxi-
mation also minimize the total squared error, S (Qs(t:) —
Q(t:))? 1191.

The coefficients in the Equation 6 can be found by solving
the optimization problem with an objective function,

G(M):wTGT(M)Jr'LUAGA(M)erPGp(M), (7)

which is a weighted sum of three components [3]. The G (M)
part minimizes the sum of squared torques. The G (M)
minimizes the sum of squared joint accelerations and sum of
squared root accelerations. Minimization of G 4 (M) enhances
the smoothness of motion trajectory. The Gp (M) component
penalizes the deviation of coefficient A;(t) from zero in
inverse proportion to its eigenvalue.

D. Stable Proportional-Derivative Controller

The SIMBICON uses conventional proportional-derivative
controller of the form,

7 =ky(04 — 0) — kab, (8)

for torso pitch and joint angles. If the controller needs to
drive the joint towards the target angle rapidly, it must use
a large k. In this case, numerical instability issue arise if the
time step is not small enough. This traditional proportional-
derivative controller has to consider the trade-off between large



proportional gains and simulation efficiency. An improved
proportional-derivative controller formulation, called stable
proportional-derivative (SPD) controllers, was proposed by
Tan et al. [2]. The idea is inspired by fully implicit integrator
described by Baraff and Witkin [20]. The SPD controllers
compute the current torque using the position and velocity
in the next state. Suppose that 6™ is the joint angle in current
state at time ¢ = n, the Equation 8 can be written as:

T = k(07 — 0) — kaf™.
Then, SPD formulation is expressed as
T = k(07T — oY) — kg0t )

Since the position and velocity for next state is unknown, gntl
and 0" *! are approximated by the first-order Taylor expansion
around 0" and 6™:

gt o on
£2]- (2] 2]

By substituting 0"+ and 6!, the Equation 9 becomes
T = k(00T — 0" — AtO™) — ka(0" + AtO"),

where the target angle for next state is stored in FSM. SPD
shows more stability and robustness when the simulation
requires large controller gains or large time steps. More details
are shown in next section.

IV. EXPERIMENTAL RESULTS

In this section, some modifications are added to the SIM-
BICON controller. The experiments start with the 2D biped
controller (detailed specification of the model can be found in
section 7 of the SIMBICON paper [1]).

A. Generalized Balance Feedback

The balance feedback law in the Equation 1 can be gener-
alized to all joints instead of only swing hip. Yin et al. [1]
mention that balance feedback strategy on multiple joints has
the form of

0d=0d0+F[jf], (10)
where F is an n x 2 matrix with balance feedback gain
coefficients for n joints. However, in the their implementation
and provided parameters, only swing-hip balance feedback
is employed. Therefore, generalized balance feedback on all
joints except stance hip (as it is considered to be a free variable
in torso and swing-hip control) is implemented and simulated.

The stable range on each joint is quite different. The balance
feedback gains on both ankles do not influence the result
of simulation significantly. Large positive or negative gains,
for example, in range of [—20,20], fail to cause biped to
lose control, instead only make the feet movement unstable.
Nevertheless, the stance knee is very sensitive to the balance
feedback gains. Adding a [—0.5,0.5] gain on either COM
or velocity can easily cause loss of control. The reason is
that in FSM, the stance knee is driven to be straight, i.e.,
stance knee has a —0.05 rad angle with its parent joint. With
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Fig. 2.  An example of generalized balance feedback that can provide
robustness against unanticipated upward steps. The height of upward step
is 10 cm.

the positive additional feedback onto stance knee, the biped
starts accumulate velocity until it rolls over. Lastly, the most
interesting joint to have a balance feedback is the swing knee.
The stable range of gains is proportional to the magnitude of
target angle in FSM.

With the addition of swing-knee balance feedback, more
gaits and locomotion can be created. One example is walking
with slightly high step but still maintaining balance without
bending the swing knee too much to counter the torque from
high step. Yin et al. show so-called “highstep walk” [1]. The
locomotion is unnatural in the sense that the swing knee bends
backward too much. This new walking gaits can be robust
against unexpected upward steps of 10 cm, which all the
original SIMBICON controllers in 2D fail to be (based on
our tests using data provided in paper [1]). Fig. 2 shows a
robust walk on an upward step.

Based on our experiments, we noticed that the balance
feedback coefficients cannot be designed alone without the
consideration of target angles in FSM and the purpose of
some angles in reality. For instance, slightly high-step gait is
useful for climbing upward steps, it also raises the COM and
results in less robustness against forward or backward pushes.
Comparing with the normal walk locomotion, the threshold
for forward pushes decreases from 600 N to around 200 N,
while for backward pushes it is reduced from 500 N to around
100 N.

B. Ground Height Feedback

With the addition of ground height feedback, the generalized
balance feedback in the Equation 10 is updated to

d
03 =040 +F | v
h

To demonstrate the robustness with ground height feedback,
we implement the ground height feedback and retain the walk
controller gains in SIMBICON [1]. The average step size of
walk controller is 0.55 m. That is the controller can detect
ground height changes 0.55 m in front of its stance foot (or
behind, depending on the direction of current velocity). In
our experiment, swing hip, swing knee, and stance knee have
non-zero ground height feedback gains. The new locomotion
is similar with SIMBICON walk controller on flat terrain as
they use the same c, and c4. Moreover, the new controller
maintains the same robustness against push forces. However,
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Fig. 3. An example of generalized balance feedback with ground height. The height of upward step is 15 cm.

controller with ground height feedback can robustly walk on
a terrain with random steps of +15 cm. This result is better
than any generalized balance feedback controller in previous
section. Fig. 3 shows an example of controller with ground
height feedback. We can see that, in comparison with Fig. 2,
stance knee keeps straight when swing hip increases its torque.
The maximum swing hip torque is also reduced, which causes
less torso pitch angle. As a result, the new locomotion looks
more natural.

In our experiments, we notice that linear ground height
feedback only works for a small range of height changes ( that
is 15 cm). In order to successfully walk on a higher step,
linear model is not sufficient. We propose and implement an
non-linear feedback strategy that allows our biped to walk on
a +20 cm step. The new feedback law is as following:

AbBg = cqd + cyv + cp f(h)h,

where f(h) is defined as 1.0 for h < 0.15, and 1.5 for
h > 0.15. For a even bigger upward step, due to the stiffness
limit of PD controller and joint limits of biped model, a phys-
ically viable locomotion cannot be produced. Although the
function f(h) is designed manually and empirically without a
mathematical proof, it shows a new way to design feedback
strategies that are not linear.

One limitation of ground height feedback is when swing
foot is placed on the edge of an upward step. It results
in unstable simulation, and biped may or may not recover
from the unstable state. One way to address this issue is first
computing the foot placement by forward kinematics, and then
using inverse kinematics to adjust the swing-hip and swing-
knee angles to avoid step edges. We can simplify the swing
leg into a model of two joints, that is ignoring the ankle. Then,
we can form an analytical solution using simple trigonometry.
However, for a complex model without this simplification, an
numerical solution is needed.

() (b) (©

Fig. 4. Average poses for (a) walk, (b) fast walk, and (c) crouch walk
controllers.

C. Principle Component Analysis

For principle component analysis, we generate 10 000 sam-
ple frames from the walk SIMBICON controller [1]. Then,
we computed the eigenvalue decomposition of the sample
covariance matrix. The eigenvectors are ranked based on their
eigenvalues. The data centering step in covariance calculation
also shows the average pose for each controller. As shown in
Fig. 4, the average poses for walk, crouch walk, and fast walk
controllers appear very similarly.

We notice that first three eigenvalues are significantly larger
than the other eigenvalues. However, with only the first two
eigenvalues, the heuristic in the Equation 5 is satisfied. Eigen-
vectors can be visualized by computing Qi = Qm+B;. Eigen-
vectors with large eigenvalues show some plausible frames of
motion. For example, as shown in Fig. 5, (a) can represent a
stance state of walking, (b) can be a frame of running, and (c)
shows a frame of jumping. Nevertheless, the other eigenvectors
do not generate anything meaningful. The detailed PCA results
can be found online'. Similar to the ideas in the work of Kry et
al. [8] for kinematic animation, interesting locomotion can be
created based on selected eigenvectors in a sinusoidal fashion.

Uhttps://github.com/FrankZhang427/FrankProjectResults
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Fig. 5. Visualized eigenvectors for walk controller. (a) to (g) are ordered from
the largest eigenvalue to the smallest.

For all SIMBICON controllers, we observe that the first
principle component is very similar to the target pose of stance
phase, that is, the state 0 and 2. Therefore, we replace the
state 0 and 2 with the visualized joint angles of the first
eigenvector, Ql, for instance, Fig. 5 (a) is used for walk
controller. Notice that for each principle component, there
is a complement vector that represents the symmetry of the
visualized eigenvector. Generally, the eigenvector corresponds
to the state 0 and the complement vector corresponds to the
state 2. The modified walk and fast walk controller perform
very similar to the original walk and fast walk controller,
while the modified crouch walk controller fails catastrophically
at start. The reason of this failure is due to the absence of
specifically-designed transition motions in SIMBICON.

D. Stable Proportional-Derivative Controller

PD controllers in SIMBICON can be replaced by SPD
controllers without changing the underlying control strategies
or simulation mechanisms [2]. We replace all the PD con-
trollers including virtual controller for torso and swing hip and
joint controllers with SPD version. Since SIMBICON uses the
penalty method to enforce joint torque constraints, the joint
torque limits are implemented in SPD fashion. That is, if k,r,
and kg7, are the maximal allowed k,, and k, respectively, we
have

- {ka(omin - 9n+1) - deo'n+17 for 9n+1 < emin

for 71 > 0,0«

ka(omax - 9n+1) - deén+1’ ’
where "1 = #" + A" and 671 = 6" + Atf". This
modification mostly prevents each joint from reaching its
minimal or maximal limits before the joint actually reaches
the limits.

At the original controller gains, k, = 300 and kg = 30,
the time step can increase from 0.00027 s to 0.00038 s
without crashing. In general, SPD is stable around 0.00035 s
for reasonable gain parameters, where k, is in the range of
[200,600] and kg is in the range of [20,60]. In contrast,
conventional PD requires a smaller time step of 0.0002 s for

Relationship between maximal time steps and gains for stability
0.0004 = PD
x == SPD
0.0003

0.0002

Time Step (s)

0.0001

200 300 400 500 600

Proportional Gains

Fig. 6. The relationship between maximal time steps and proportional gains.

TABLE I
JOINT TORQUE NORM SQUARED AVERAGED OVER TIME FOR 100
THOUSAND TIME STEPS, WITH kp = 350 AND kg4 = 35.

terrain type flat downward
gaits SPD PD SPD PD
walk 19211.824 | 19257.502 | 28891.479 | 28956.936
fast walk 36158.094 | 36257.850 | 38877.630 | 38981.566
crouch walk | 65352.285 | 65434.848 | 74499.780 | 74638.500

large gains. We apply binary search on different time step, At,
to find the maximal time step for a fixed proportional gain, k.
Fig. 6 shows the maximal stable time steps versus proportional
gains. In this comparison, we set kg = 0.1k,. Nonetheless, as
long as we ensure kg > k,At, the simulation is stable [2].
Inspired by the objective function in the Equation 7 of
the optimization in the work of Safonova et al. [3], we can
compute the joint torque norm squared and joint acceleration
norm squared averaged over time to compare SPD and PD
in terms of motion efficiency and smoothness. We sample
100000 iterations for each style and each terrain type from
SPD and PD controllers. The parallel comparison shows that
SPD controllers have slightly lower averaged joint torques and
accelerations, as shown in Table I and Table II. That is SPD
controllers drive each joint to its target angle a little more
efficiently and smoothly than conventional PD controllers.

V. IMPLEMENTATION

The implementation in this project is developed on 2D
SIMBICON code in Java. The original code can be found
at SIMBICON project webpage?. The graphical interface is
implemented in Java Applet. Some modifications are added
for easier usage, including extra buttons for recording and
running PCA, and extra keybindings for new terrains and new
controllers. Additional gaits described in SIMBICON paper [1]
are also implemented. We use JAMA?, a linear algebra pack-

Zhttps://www.cs.ubc.ca/~van/papers/Simbicon.htm
3https://math.nist.gov/javanumerics/jama/
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TABLE 11
JOINT ACCELERATION NORM SQUARED AVERAGED OVER TIME FOR 100
THOUSAND TIME STEPS, WITH kp = 350 AND k4 = 35.

terrain type flat downward
gaits SPD PD SPD PD
walk 933125.6 994656.6 | 2499578.8 | 2724502.5
fast walk 1910214.4 | 2019986.5 | 1954188.0 | 2069604.6
crouch walk | 10424819 11157453 | 7612047.0 | 8264317.5

age for Java [21], to facilitate matrix decomposition in this
project. The project source code can be found online'.

VI. CONCLUSION

The SIMBICON paper presents a simple yet robust way of
biped simulation. The use of FSM provides a good platform
for developing more sophisticated strategies as shown in many
other related works. In this project, we extend some of the
ideas in the SIMBICON paper. The generalization of linear
balance feedback makes it possible to create locomotion of
more gaits for a variety of tasks. We generalize not only the
control to all joints, but linear balance feedback to utilize
more sensory information. Furthermore, stable proportional-
derivative controller improves the simulation in terms of both
simulation efficiency and appearance. We also apply PCA on
SIMBICON locomotion. The results of PCA can be useful
to generate more realistic states for FSM, or even animations
with proper animators.
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