
Classification on Modified Digits 
Team: Definitely need a Titan X  

Yangchao Yi 
yangchao.yi@mail.mcgill.ca 

260742608 

Zhiguo Zhang 
zhiguo.zhang@mail.mcgill.ca 

260550226 
 

Yunhua Zheng 
yunhua.zheng@mail.mcgill.ca 

260733520 

I. INTRODUCTION 
This project aims to perform a classification task on the 

modified figures based on the MNIST dataset [1]. Each figure 
contains two digits and an operator indicated by the first letter of 
the operation, i.e. ‘A’ or ‘a’ for addition and ‘M’ or ‘m’ for 
multiplication. Our task is to build a model that correctly 
predicts the result of the mathematical operation on each input 
figure. For this purpose, we have implemented a baseline 
logistic regression classifier, two fully connected feedforward 
neuron networks and a convolutional neuron network (CNN). 
Other techniques have also been attempted at to boost the 
performance, e.g. cost-sensitive learning and data augmentation. 

II. RELATED WORK 
On image classification tasks, CNNs outperform fully-

connected neuron networks, and even a very simple CNN can 
achieve a high-level performance, as demonstrated in [2]. The 
great feature extraction capability of deep learning methods has 
been recognized; however, a large amount of training data must 
be available to avoid overtraining [3]. It is thus critical to 
generate additional data based on what is available. A such 
method, elastic distortion, has been adopted in [2]. On the other 
hand, authors of [3] have proposed a novel method to work with 
limited training samples using Gabor filtering and deep CNN, 
for hyperspectral images (HSIs) specifically. Techniques like 
dropout, rectified linear unit (ReLU) and batch normalization 
(BN) have been incorporated to further improve the performance 
of the proposed framework [2]. For interested readers, an 
extensive overview of CNN and related papers can be found in 
[4]. 

 Despite the exponentially increasing amount of available 
data, the issue of imbalanced data can greatly weaken the 
performance of most classifiers with the assumption of balanced 
class distributions [5]. There have been a large number of 
publications addressing this issue already and that number sees 
an exponential increase; the general goal is to ensure balanced 
accuracies of prediction across different classes [5].  Three main 
methods to mitigate negative effects imposed by the imbalance 
are: 1. Sampling methods, e.g. oversampling, under-sampling, 
and synthetic sampling, where a balanced dataset is produced; 2. 
Cost-sensitive methods, where a cost matrix is designed such 
that misclassifying a less frequent outcome receives a greater 
penalty; 3. Kernel-based methods and active learning methods, 
which can be applied on support vector machines (SVMs) [5]. 

 

III. PROBLEM REPRESENTATION 
The images in the dataset are represented as vectors of length 

4096, with each value representing the greyscale of a pixel. All 
the greyscale values of the pixels form the feature space. As 
there are various types of shadows in the background, some kind 
of noise filtering has been performed to reduce such distracting 
factors when implementing the fully-connected neuron network. 
Specifically, the greyscale of each pixel in the image is 
converted to a binary value based on a certain threshold, e.g. 200 
for the greyscale ranging from 0 to 255. So, the input becomes 
4096 binary values. Though this simplifies the problem, it may 
have eliminated useful information at the same time. When 
implementing the other two classifiers, input normalization has 
been performed instead.  

Besides, the 1-hot encoding has been implemented for the 
output. The possible outputs are 40 discrete integers with two 
operands ranging from 0 to 9 and two possible operators ‘add’ 
and ‘multiply’. Consequently, there are 40 output units, each 
corresponding to a certain class. The desired output of a class is 
1 at the corresponding output unit and 0 elsewhere. Usually, a 
softmax function is conducted as the final step to convert the 
values at the output into the probabilities that the input figure 
belongs to different classes.   

 Moreover, based on the properties of the training set, the 
following more advanced strategies have been considered and 
adopted to further improve the performance of CNN. 

A. Data Balancing 
As the number of examples in each class is not uniform 

(illustrated as the frequency of occurrence in the training set in 
Fig. 1), weighting methods have been adopted to penalize more 

Fig. 1 Class distribution 



severely the misclassification of a less probable outcome than 
that of a more probable one. For example, when implementing 
the neuron network with cross-entropy loss function, the term 
associated with a less probable outcome can be weighted more 
heavily. In the CNN implementation, the class weighting 
method inspired by [6] is used: for a class A, the weight is 
specified as 

𝑤𝑒𝑖𝑔ℎ𝑡	(𝐴) = 	
	#	𝑠𝑎𝑚𝑝𝑙𝑒𝑠

#	𝑐𝑙𝑎𝑠𝑠𝑒𝑠	×	#	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	𝑖𝑛	𝑐𝑙𝑎𝑠𝑠	𝐴
 

where # ∙ denotes “the number of”, and we have #	𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =
50000 and #	𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 40 for this case. 

Using this weighting method, our CNN model penalizes 
more the misclassification of minority class. Table I displays the 
class weights of the training data in an increasing order of class 
labels (left to right, up to bottom). 

TABLE I.  CLASS WEIGHT OF TRAINING DATA 

0.22063 1.51413 0.91019 0.81286 0.62919 

0.66293 0.45694 0.53116 0.39654 0.41088 

0.51867 0.76791 0.49712 1.03211 0.79113 

0.84969 0.87890 2.94502 0.95826 2.52809 

2.01252 1.09863 5.20833 2.09497 2.15105 

2.34864 2.29124 2.32919 1.51413 2.32438 

2.12665 2.31958 2.28194 3.91986 2.14694 

2.17181 2.13472 4.61065 2.32438 4.42913 
 

B. Data Augmentation 
A variety of data augmentation methods have been used in 

this project. Since the training data is constructed using 
handwritten digits and characters, a good classifier should 
predict the correct result that is independent of basic 2D and 3D 
transformations of images.  

Random 2D image transformations including translation, 
rotation, zooming and shearing [7], have been applied on the 
training dataset, which significantly increases the size of training 
data. Additionally, elastic distortion in [2] has been employed to 
further enlarge the training dataset. The analogy of elastic 
distortion is that in real life, a handwritten paper may not be flat. 
Two parameters for elastic distortion is alpha and sigma as 
described in [8]. In this project, alpha = 36 and sigma = 6, 8, 10 
have been chosen, as a larger distortion would lead to an ill-
formed image. Fig. 2 visualizes the effect under elastic distortion 
with alpha = 50 and sigma = 5.  

Moreover, perspective skew has been used with the 
Augmentor package [7]. The rationale is that the classifier 
should be invariant about perspective changes. There are 12 
possible perspective skews used in this project, including tilting 
left, right, forward, or backward, and skewing around 8 points 
of the image. Here is an example of a skewing about the middle 
point of the left edge on the training data (Fig. 3). Both elastic 
distortion and perspective skew mimic possible real-world 
variations on handwritten data. 

 

 

IV. ALGORITHM SELECTION AND IMPLEMENTATION 
To begin with, a logistic regression classifier has been 

implemented as the baseline using the scikit-learn library [9]. 
Then, two versions of neuron networks have been implemented 
from scratch. The last classifier is the CNN implemented using 
packages [10]. In this section, implementation details will be 
given.   

A. Logistic Regression 
A baseline learner is built based on logistic regression. The 

4096 pixels are considered as 4096 input features of an image. 
The regularization for logistic regression is L2 penalty. The 
solver used for this learner is stochastic average gradient descent 
(SAG). Since our training data is very large, SAG gives a faster 
convergence than other algorithms. However, SAG is very 
sensitive to the scale of features. Hence, StandardScaler from the 
scikit-learn library [9] is employed to standardize the features. 
Stopping criterion is set to be 0.01 as at 0.1 the results fluctuate 
significantly, while at 0.001 the convergence is slow. Moreover, 
cross-entropy loss is chosen for multi-class classification. The 
training data is split into training data and validation data with 
9:1 ratio.  

B. Fully Connected Feedforward Neuron Network 
The neural network is considered a universal function 

approximator, which means that with enough nodes, a two-layer 
neural network can approximate any function within an error 
bound. Our goal is to build a neural network such that given the 
training data, it can automatically recognize the numbers and 
operator in an image, operate the operation and output the 
result. Most parts of the neural network are trivial and easy to 
implement; the critical part is computation of the derivative of 
the loss function with respect to the weights and biases, i.e. 

Fig. 2 Elastic distortion 

Fig. 3 Perspective Skew 



backpropagation. We employed a categorical cross entropy as 
the loss function, which is given as follows: 

𝐿 𝑥 =
1
𝑛
Σ=>?@ ΣA>?BC [𝑦=,A ⋅ log ℎ 𝑥= A + 

						 1 − 𝑦=,A ⋅ log 1 − ℎ 𝑥= A ] 

where the function ℎ(𝑥) is the function represented by the fully 
connected neural network. If we expand the ℎ(𝑥) in terms of 
the nodes in the last hidden layer: 

ℎ 𝑥 = 𝜎(𝑤OP ⋅ 𝑜OR? + 𝑏O) 
where 𝑙 is the number of layers and 𝑜OR?  is the output of 𝑙-th 
layer. The derivative of 𝑜OR?  with respect to the above loss 
function 𝐿(𝑥) is 

𝜕𝐿
𝜕𝑜OR?

= 𝑜OR? − 𝑦 

because we employ the sigmoid function as the activation 
function on all nodes, and we have:  

𝑜OR? = 𝜎(𝑤OR?P ⋅ 𝑜ORU + 𝑏OR?) 

𝜕𝑜OR?
𝜕𝑤OR?

= 𝑜ORU ⋅ [𝑜OR? ⋅ (1 − 𝑜OR?)] 

𝜕𝑜OR?
𝜕𝑏OR?

= 𝑜OR? ⋅ (1 − 𝑜OR?) 

Using the group of equations above recursively, we can compute 
the derivatives with respect to parameters on each layer to get 
the total gradients 𝛿𝑊 and 𝛿𝐵. Then we use the gradient descent 
equation to updata all the parameters in the network: 

𝑊 = 𝑊 − 𝛼 ⋅ 𝛿𝑊 

𝐵 = 𝐵 − 𝛼 ⋅ 𝛿𝐵 

In practice, we usually split the whole dataset into many subsets 
called batches, and update the weights and biases on every batch. 
Because this can accelerate the convergence of training. 

Another implementation uses tanh in place of the sigmoid 
function and uses the cross-entropy error as the loss function 
[11]. This implementation is essentially the same as that 
presented in [11]. With the softmax function at the final layer, 
considering the input layer as layer 0, the output at the output 
layer (layer 2) 𝑦 is obtained through following equations: 

𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑧U  

𝑧\ = 𝑎\R?𝑊\ + 𝑏\, 𝑘 = 1, 2 

𝑎\ = tanh 𝑧1 , 	𝑖𝑓	𝑘 > 0	𝑎𝑛𝑑	𝑎\ = 𝑥, 𝑖𝑓	𝑘 = 0 

where 𝑊\ is the weight matrix between layer 𝑘 − 1 and layer 𝑘, 
𝑏\ is the displacement vector, and 𝑥 is the input.  

Ignoring the influence from other output units introduced by 
the softmax function, the gradient descent rules for a three-layer 
neuron network are as follows [11]: 

𝜕𝐿
𝜕𝑊U

= 𝑎?P𝛿e,
𝜕𝐿
𝜕𝑏U

= 𝛿e 

𝜕𝐿
𝜕𝑊?

= 𝑥P𝛿U,
𝜕𝐿
𝜕𝑏?

= 𝛿U 

where 𝛿e = 𝑦 − 𝑦 , and 𝛿U = (1 − 𝑡𝑎𝑛ℎU𝑧?) ∘ 𝛿e𝑊U
P. The 

gradient descent can be easily extended for four or more layers.   

After analyzing the “compute_class_weight” function from 
scikit-learn [9], it has been found that the returned weight for 
each category is the ratio of 2 and the number of training 
examples in that category, so it is easy to implement by hand and 
it has been incorporated into the code of the neuron network.  

C. CNN 
Inspired by VGG models [8], our CNN model consists of 7 

convolution layers with 3 by 3 kernels, 2 fully connected layers 
of 512 nodes followed by an output layer of 40 nodes. The 
details of our model are documented in Appendix A. 

We have applied a Lambda layer at the beginning to 
normalize the input images with the following formula: 

𝑥 =
𝑥 − 𝜇
𝜎

 

where 𝜇 is the mean value and 𝜎 is the standard deviation of the 
input image. Every two convolution layers, a batch 
normalization layer, a max-pooling layer with 2 by 2 kernels, 
and a dropout layer with the dropout probability of 0.25 are 
inserted. Batch normalization layer scales the features, which 
makes gradient descent easier. Max-pooling layer reduces the 
dimension of training parameters. Dropout layer enhances the 
generalization of the model and reduces the amount of 
computation. Furthermore, the number of filters in convolution 
layers is doubled so that more features of the image can be 
recognized as learning goes deeper. 

 After 3 blocks of convolution layers, there is a flatten layer 
added. Flatten layer unfolds a 2D array into an 1D array for fully 
connected layers. For each fully connected layer, there are also 
a batch normalization layer and dropout layer serving the same 
purpose. The activation function used in all middle layers is a 
ReLU function as it empirically performs better than other 
activation functions. The output layer uses softmax for 
activation. 

 The loss function used in CNN is the categorical cross 
entropy loss function with class weights applied. The evaluation 
metric in the learning process is accuracy. Various optimizers, 
including SGD, momentum, RMSprop and Adam, have been 
examined and the best found is Adam optimizer given other 
factors fixed. Adam optimizer improves the performance with 
sparse gradients [12]. 

The hyper-parameters in this model includes batch size of 
each iteration, learning rate of the optimizer, and number of 
epochs. We have tested the effect on loss and accuracy of a 
variety of batch sizes. As shown in Appendix B(I), we see the 
effect of different batch size is quite negligible. However, larger 
mini-batch size reduces the variance of gradient descent updates 
[13]. Therefore, 256 has been chosen as our mini-batch size. As 
for learning rate, as shown in Appendix B(II), for the first 20 
epochs, there are enormous fluctuations for learning rate of 0.1, 
while learning is too slow for learning rate of 0.0001. Therefore, 
learning rate of 0.001 is chosen for Adam optimizer. Regarding 
the beta parameters, we believe that the default setting works the 
best for momentum effect. As for number of epochs, the model 
may have overtraining issues as the number of epochs increase. 



However, due to limited computation power, the overtraining 
point of our model has not been found. In Appendix B(III), 
accuracy and loss plots are given for 200 epochs. 

At the preprocessing step, random elastic distortion and 
perspective skew are applied on training data to generate extra 
data. Extra data of two times the size of the original data has 
been generated by perspective skew and of three times the size 
by elastic distortion. In total, we have 300,000 input images for 
training. During training, an ImageDataGenerator from [10] is 
used for random translation, rotation, shearing and zooming, 
which magnifies the training data by 500 times.  

V. TEST AND VALIDATION  
The results obtained with the trained models on the training 

set and a detailed analysis of them will be presented in this 
section. As we are aware of the limitations of the first two 
classifiers and have expected that CNN is the best classifier 
among the three, more efforts have been made on the CNN 
classifier. 

A. Logistic Regression 
With the baseline learner, the average precision, average 

recall, average F1-score and validation accuracy obtained are 
0.05, 0.07, 0.06 and 0.0666 respectively. Just for reference, the 
achieved accuracy on Kaggle is 0.0695. 

B. Neuron Network 
The original training set is split into 4:1 for training and 

testing respectively. The learning rate has been set to 0.008, 0.01 
and 0.012, and the number of nodes in the hidden layer has been 
set to 512, 1024 and 2048. After 1000 updates, the achieved 
training and testing accuracies for the 3-layer neuron network 
with tanh as the activation function are as illustrated in Fig. 4. 
Actually, though the learning rate 0.012 and the number of nodes 
1024 seem to perform dominantly well, the accuracies are 
approximately the same in all cases. Another thing to notice is 
that though the model gets a training accuracy over 95% very 
quickly, as shown in Fig. 5, the testing accuracy remains low 
even at the end of 1000 iterations and it cannot be expected that 
this metric would increase much with more updates. The results 
obtained using our neuron network with the sigmoid activation 
function or 4 layers are similar and not included here. 

As a severe drawback of the fully connected feed forward 
neuron network has been noticed after performing basic training 
and validation for 3-layer and 4-layer networks, no more layers 
have been attempted at. 

C. CNN 
All of our tests in this section are based on a 9:1 

training/validation data split. One of the most noticeable 
observations during testing is that the training data size plays a 
dominant role in terms of classifier performance. At the first 
attempt, ImageDataGenerator is not used during the training 
process. 200 epochs are performed on the original data and the 
validation accuracy is approximately 73% on average. Extra 
epochs do not significantly improve the validation accuracy at 
this time. Then, 2D image augmentation is added. The model is 
trained on original data with 50 epochs and generated data with 
200 epochs. The validation accuracy is then improved to 89.5%. 
Furthermore, increasing the number of training epochs on 

Fig. 4 Training accuracy (upper) and test accuracy (lower) after 1000 
epochs for a 3-layer neuron network with different learning rates 
(0.008, 0.01 and 0.012) and different numbers of nodes in the hidden 
layer (512, 1024, 2048). 

Fig. 5 The training (upper) and test (lower) accuracies with the 
number of updates. 



augmented data to 500 further improves the validation accuracy 
to 92.9%. Since data augmentation makes a great contribution to 
the model performance, 3D image augmentation is performed 
on the original training data. With 3 times more training data 
generated from each original image by elastic distortion, we 
trained the model with the training data for 50 epochs and 2D 

increased to 96.7%. Finally, we added random perspective skew 
on training data. Perspective skew alone increases the size of 
training data by 100,000. A similar training process is performed 
with new training data. Surprisingly, the validation accuracy 
reaches 99.28%. Table II shows the Kaggle test results. 

TABLE II.  TEST RESULTS OF CNN MODELS 

Training data Validation Accuracy Kaggle Score 

Original data 89.0% 90.325% 

2D augmented 92.9% 92.350% 

Elastic distortion 96.7% 95.575% 

Perspective Skew 99.3% 98.675% 

 

VI. DISCUSSION 
From the last section, it is obvious that the CNN classifier 

performs much better than the other two classifiers. The logistic 
regression classifier is essentially a single neuron; obviously, it 
is too simple to learn any complicated structure in the image. In 
consequence, it generally cannot perform better than the neuron 
network, though it only takes a small amount of time to train. 
Besides, the results of fully connected neural network imply that 
the original neural network is good at fitting the data that it has 
seen, since it is called the universal function approximator; 
however, it performs badly on new data, i.e. it does not 
generalize well, which is understandable because the original 
neural network is not shift-invariant. For example, an image 
would seem totally new to a fully connected neural network if 
all the pixels of the image are shifted left by one pixel. This 
justifies the better performance of CNN as CNN essentially 
extracts the features from local areas of the image regardless of 
where the symbols are located. In a CNN, many filters are 
implemented on several layers to capture the features of the 
image at different levels. In the shallow layers, these filters learn 
some simple features, e.g., lines and angles. In the deep layers, 
the filters combine the simple features and represent more 
abstract and complicated features, e.g. some filters may try to 
match if a number ‘8’ appears in some part of an image. This 
way, CNN is more robust to transformation of image and can 

generalize well, which is consistent with the validation results. 
Unfortunately, CNN has a much higher time complexity than the 
other two methods and requires much more time to train. 

STATEMENT OF CONTRIBUTIONS 
Zhiguo Zhang has implemented both the logistic regression 

augmented data for 500 epochs, and the validation accuracy has  and the CNN using packages. Yangchao Yi and Yunhua Zheng 
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that of the authors.  

REFERENCES 
[1] Y. LeCun, C. Cortes and C.J.C. Burges, The MNIST Database of 

Handwritten Digits. [Online]. Available: 
http://yann.lecun.com/exdb/mnist/. [Accessed: 12-Nov.-17]. 

[2] P.Y. SimardBest, D. Steinkraus and J.C. Platt, "Best Practices for 
Convolutional Neural Networks applied to Visual Document Analysis", 
Proc. Int. Conf. Document Analysis and Recognit., Aug. 2003. 

[3] Y. Chen, L. Zhu, P. Ghamisi, X. Jia, G. Li and L. Tang, “Hyperspectral 
Images Classification With Gabor Filtering and Convolutional Neural 
Network,” IEEE Geosci. Remote Sens. Lett., vol. PP, no. 99, pp. 1-5, Nov. 
2017.  

[4] A. Deshpande, The 9 Deep Learning Papers You Need To Know About 
(Understanding CNNs Part 3), [Online]. Available: 
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-
Learning-Papers-You-Need-To-Know-About.html. [Accessed: 13-Nov.-
17]. 

[5] H. He and E.A. Garcia, “Learning from Imbalanced Data,” IEEE Trans. 
Knowl. Data Eng., vol. 21, no. 9, Sept. 2009. 

[6] G. King and L. Zeng, “Logistic Regression in Rare Events Data,” Political 
Analysis, pp. 137-163, 2001. 

[7] M.D. Bloice, C. Stocker, and A. Holzinger, “Augmentor: An Image 
Augmentation Library for Machine Learning,” arXiv 
preprint arXiv:1708.04680, 2017. [Online]. Available: 
https://arxiv.org/abs/1708.04680. [Accessed: 13-Nov.-17]. 

[8] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for 
Large-Scale Image Recognition”, Comput. Vis. and Pattern Recognit., 
Sept. 2014. 

[9] Pedregosa et al, Scikit-learn: Machine Learning in Python, JMLR 12, pp. 
2825-2830, 2011. 

[10] F. Chollet et al, Keras, Github, 2015. [Online]. Available: 
https://github.com/fchollet/keras. [Accessed: 13-Nov.-17]. 

[11] D. Britz, Implementing a Neural Network from Scratch in Python – An 
Introduction, 2015. [Online]. Available: 
http://www.wildml.com/2015/09/implementing-a-neural-network-from-
scratch/. [Accessed: 12-Nov.-17].  

[12] D.P. Kingma and J.L. Ba, “Adam: A Method for Stochastic 
Optimization,” ICLR, Dec. 2014. 

[13] L. Bottou, F.E. Curtis and J. Nocedal, “Optimization Methods for Large-
Scale Machine Learning,” arXiv preprint arXiv:1606.04838, Jun. 2017. 
[Online]. Available: https://arxiv.org/pdf/1606.04838.pdf. [Accessed: 13-
Nov.-17]. 

  



Appendix A 
 



Appendix B(I) 

 



Appendix B(II) 

 



Appendix B(III) 

 


