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I. INTRODUCTION

Reinforcement learning techniques have raised attention
from financial industry, especially by employing reinforcement
learning in portfolio managements. In this project, we explored
three state-of-art reinforcement learning algorithms, includ-
ing policy gradient (PG), deep deterministic policy gradient
(DDPG) and proximal policy optimization (PPO). The goal
is to train an intelligent agent that can continuously trade in
stock market by allocating on different assets. In the course of
this project, we performed hyper-parameter tuning and feature
selection for each algorithm. Furthermore, we compared the
return performance of different algorithms using both U.S.
and China stock market data. In the following sections of
this paper, we will formally define the portfolio management
problem as a Markov decision process, describe our detailed
methodology, and demonstrate our experimental comparison
and resultd']

II. RELATED WORK

Deep reinforcement learning is the combination of rein-
forcement learning (RL) and deep learning. Reinforcement
learning refers to goal-oriented algorithms, which learn how
to attain a complex objective or maximize along a particular
dimension over many steps. Like a child incentivized by candy,
agents trained by these algorithms are penalized when they
make the wrong decisions and rewarded when they make the
right ones. RL algorithms that incorporate with deep learning
techniques can accomplish a wide range of more complex
tasks that were previously infeasible for a machine. They can
even beat world champions at the game of Go [1] as well as
human experts playing Atari video games.

During the last decade, a variety of reinforcement learning
methods have been attempted to solve the asset allocation
problem. Du et al. investigated Q-learning and recurrent rein-
forcement learning (RRL) on simple CAPM model. The agent
decides the investment weights on risky market portfolio and
risk-free asset. They considered interval profit, Sharpe ratio
and derivative Sharpe ratio as value functions. Recurrent re-
inforcement learning achieves better stability comparing with
Q-learning [2]]. Almahdi et al. extended previous work on re-
current reinforcement learning and constructed asset allocation

'Code for this project can be found at https:/github.com/ZhaoqiXu/
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based on the expected maximum drawdown. The improved
RRL model with Calmar ratio, outperforms the previous RRL
model with Sharpe ratio and Sterling ratio. It also showed
better return performance than hedge fund benchmarks[3].
With the development of deep learning, Jiang et al. proposed
a portfolio management reinforcement learning framework
to utilize deep learning solutions. The framework consists
of Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), and a Long Short-Term Memory (LSTM)
[4]]. Tang proposed actor-critic based reinforcement learning
method on portfolio management. The optimal investment
is achieved by dynamic planning [S]. Liang et al. applied
deep deterministic policy gradient (DDPG), proximal policy
optimization(PPO) and adversarial policy gradient to portfolio
management problem [6].

III. PROBLEM FORMULATION

Portfolio management is essentially how to allocate given
fund on several risky assets and risk-free assets. For simplicity,
we assume risk-free asset is cash instead of treasury bill in
real life. Moreover, we only consider non-negative weight on
each asset, i.e. short-selling or loan from bank is not allowed.
The stock market is assumed to be continuous. That is the
closing price today equals to the opening price tomorrow.
Based on the observed market state, our agent reallocates the
portfolio weights at the end of each day. The transaction cost
is considered when the agent tries to adjust the weights.

Portfolio management problem can be modeled as a Markov
decision process, where tuple (S, A, P, r, pg, ) represents the
problem space. The set of states .S consists of states that
describe the previous open, closing, low, high price and other
financial indices including stock volume, P/E ratio, P/B ratio
and so on. The set of actions A is formed by the allocating
weight vector a; at time t, where Zﬁ\io a;¢ =1 with M +1
assets. P: S x A xS — R denotes the transition probability
distribution. r : S x A — R is the reward function. pg is the
distribution of initial state sg. <y is the discount factor. We also
define v; as the closing price at time ¢ and y; = v;/v¢_1 as
the price fluctuation vector.

Let ® be the element-wise vector multiplication. Then, the
weight vector a; is updated by the following formula at the
end of each day:
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We define the transaction cost is proportion to the amount
of transaction, Mzi]\iomi,t—l — a;y| with p = 0.25% in
our experiment. The fluctuation of wealth at time ¢ — 1 is
ar—1 - Yr—1. We notice that the conventional reinforcement
learning objective function takes form of Ry = > v'r (s, ar).
However, in the context of portfolio management, the wealth
at time T is calculated by Ry = H;‘FZO Ror(st, at) [6]. As a
result, we take logarithm on the change in wealth and convert
the product into summation form. Therefore, the reward at
time ¢ — 1 is defined as

M

r(S¢—1,00-1) = log(at—l cYi—-1 — MZ |ai,t—1 - ai,tD
i=0

IV. METHODOLOGY

In our project, we implemented three algorithms, Policy
Gradient (PG), Deep Deterministic Policy Gradient (DDPG)
[7] and Proximal Policy Optimization (PPO) [8], to find
optimal assets allocation strategies for high return. The PG
algorithm has been well explained in class so we will mainly
focus on the latter two algorithms. Both DDPG and PPO can
be classified as Deep Reinforcement Learning category.

Deep reinforcement learning has three strengths compared
with merely using reinforcement learning or deep learning
only in portfolio management problem. First of all, stock per-
formance can be affected by various factors, such as economic
growth, interest rates, market confidence and expectations and
so on, which make stock performance predictions inaccurate.
Fortunately, deep reinforcement learning does not explicitly
involve predictions of stock performance. Secondly, function
approximation using neural network can bring the flexibility
of design specific neural network structure and overcome the
limitations of number of states and actions that has been shown
as an obstacle for conventional reinforcement learning. More-
over, the portfolio management problem can be well defined
as a RL-friendly problem, in which the market information
is defined as input and the allocating vector is defined as
output. This does not require any investment expertise, and
still achieves self-improvement.

The rest of the section will demonstrate the details of two
deep reinforcement learning algorithms, PPO and DDPG.

A. Actor Critic Methods

Both DDPG and PPO are built on the Actor Critic model.
Actor Critic model [9] is a “hybrid method” combining value
based methods and policy based methods. It consists of two
neural networks. A Critic measures how good the action taken
is, whereas an Actor controls how our agent behaves.

The problem of conventional policy gradient method is that
reward can only be calculated by the end of episode. High
reward at the end may indicate that actions in this trajectory
are good, even if some are not. Consequently, the convergence
is slow. The Actor Critic model has a better score function.
Instead of waiting until the end of each episode, it updates at
each step similar to TD learning. To do an update at each step,
we need to train a Critic model which approximates the value

function. This value function replaces the reward function in
PG.

At the beginning, the Actor has very limited knowledge
about the task and takes some actions randomly. The Critic
observes the action and provides some feedback. By learning
from the feedback, the Actor improves its policy accordingly.
Meanwhile, the Critic also updates its approximation to pro-
vide better feedback. Therefore, the idea of Actor Critic is
to make use of two neural networks, where the estimation of
both run in parallel. Furthermore, since there are two sets of
parameters, they must be optimized separately.

B. Proximal Policy Optimization

The main idea of Proximal Policy Optimization is to avoid
significant policy update. To achieve this, PPO computes a
ratio that indicates the difference between the new and old
policy, and clips this ratio between 0.8 and 1.2. This ensures
that policy could not update significantly. Furthermore, PPO
introduces a new trick, that is training the agent by running K
epochs of gradient descent over sampling mini batches. PPO
is based on Advantage Actor Critic (A2C).

The idea of PG is to encourage the agent to take actions that
lead to higher rewards and avoid bad actions. However, if the
step size is too small, the training process is too slow, while if
it is too large, there is too much variability during the training.
Fortunately, PPO improves the stability of the Actor training
by limiting the policy update at each training step. PPO
introduces a new objective function called Clipped Surrogate
Objective function which constraints the policy change in a
small range by using a clip.

1) Clipped Surrogate Objective: The Clipped Surrogate
Objective is a replacement for the policy gradient objective
function that is designed to improve the training stability by
limiting the change one update could make at each step. The
objective function,

LPG(Q) = Et 10g Yyl (at\st) At

is commonly used to optimize the neural network in vanilla
PG. A, is often replaced by the discounted return. By taking
a gradient ascent step on this loss with respect to the network
parameters, the actions that led to higher reward are chosen.

However, instead of using the log probability of the action
to evaluate the impact of them, there are also other similar
functions introduced in [10]. They use the probability of the
action under the current policy, divided by the probability of
the action under the previous policy as the following:

Yy (at |St)
Toola (at|st)
If r,(@) > 1, it means that the action is more probable in the
current policy than the old one. If 0 < r:(f) < 1, it means
that the action is less probable for current policy than for the
old one. Replacing this with the log probability, we get a new
objective function

Tt(e) =

o (at ‘St)
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and this is what is done in the TRPO method [11]]. Note that if
the action is much more probable for the current policy, r:(6)
can be very big, which means that the agent is going to take
big gradient steps here. To deal with this issue, the TRPO
method applies some extra techniques (e.g., KL Divergence
constraints) to limit the policy update step.

What PPO does is one step further. Instead of adding the
extra techniques, PPO directly build these properties into the
objective function. Hence, Clipped Surrogate Object is defined
as

LCLIP(g) = [, [min (rt(ﬁ)/lt, clip (7:(60),1 — €, 1+ ¢) At)} .

The first term inside the minimization is the same term we
saw in the TRPO objective. The second term is a version
where the r4(0) is clipped between (1 — €,1 + €). Finally,
the minimization of both of these terms is taken. The clipping
limits the effective change of one update at each step in order
to improve stability. More details are discussed in the original
paper. The pseudocode of PPO is attached below.

Algorithm 2 PPO

1: Initialize actor ;¢ : § — R™*! and
ag:8 —diag(o1,02, -+ ,Omi1)
2: fori=1toM do
3:  Run policy mp ~ N(u(s),a(s)) for T timesteps and
collect (s, a, 1)
4 Estimate advantages A, =3 ,,_, 7" ~try — V(sy)
5:  Update old policy w4 < mp
6: for j =1to N do
7 Update actor policy by policy gradient:

> VLS (6)

o

Update critic by:
E
VL(9) =~ VA,
t—1

9: end for
10: end for

Fig. 1. PPO Pseudo Code

C. Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient is an algorithm which
concurrently learns a Q-function and a policy. It has four
networks: online actor, online critic, target actor and target
critic. Actor is the current policy and critic estimates the value
of the current policy. When the agent observes a state, the
online actor provides an optimal action in continuous action
space. Then the online critic evaluates the actor’s choice and
updates online actor. Moreover, the target actor and target critic
are used to update online critic. DDPG uses off-policy data
and the Bellman equation to learn the Q-function, and uses
the Q-function to learn the policy.

This approach follows the same idea as Q-learning: if we
have the optimal action-value function Q*(s,a), then in any
given state, the optimal action a*(s) is found by solving

a*(s) = arg max Q" (s,a).

One of the reason that we choose DDPG over naive Q-
learning is that DDPG is adapted specifically for environments
with continuous action spaces. When there are finite number
of discrete actions, we can just compute the Q-values for each
action separately and directly compare them. However when
the action space is continuous, we cannot exhaustively evaluate
the action space and solving the optimal problem is non-trivial.
The good news is that because the action space is continuous,
the function Q*(s,a) is expected to be differentiable and
this allows us to set up a gradient-based learning rule for
a policy p(s). Therefore, to compute max, Q(s,a), we can
approximate it with max, Q(s,a) = Q(s, pu(s)) instead of
using a normal optimization algorithm.

DDPG learns the Q-function by minimizing a mean-squared
Bellman error (MSBE) loss function. The Bellman equation
about the optimal action-value function is given by

Q*(s,a) = s/]gP [T(S, a) + ’ynza/,XQ* (S’7CL/)

where s’ is sampled by the environment from a distribution
P(-|s,a).

Suppose the approximator is a neural network Qu(s,a),
with parameters ¢, and that we have collected a set D of
transitions (s, a,r,s’,d). We can use a MSBE function to
evaluate how closely ()4 comes to satisfying the Bellman
equation:

L(¢,D) =
E [(Q¢(s,a)— (r+7(1—d) H}I%XQ‘b (s’,a’)))z}

(s,a,r,s)~D

Thus, the function approximator is derived by minimizing
the loss function above.

It is worth to mention that there are two tricks used in the
implementation of DDPG.

1) Replay Buffer: DDPG uses experience replay
to update neural network parameters. During each
trajectory roll-out, we save all the experience tuples

(state, action, reward, nextState) and store them in a finite
sized cache - a “replay buffer”. Then, we sample random
mini-batches of experience from the replay buffer when we
update the value and policy networks. As a result, the data is
more independently distributed.

2) Target Networks: Q-learning algorithms make use of
target networks. The term

r4+y(1 = d)max Qg (s, a’)

is called target, because we want the Q-function to be as close
as to this target. One issue of the target network is that it uses
the same parameters that we are trying to train. This causes
the MSBE converging slowly and unstable. To overcome this



issue, we use a second network with a time delay of the first
one. The second network is called target network.

Recalling the goal of this algorithm is to learn a deter-
ministic policy pg(s) which gives that action that maximizes
Q4(s,a). Because the action space is continuous, we perform
gradient ascent to solve

max S’\}?D [Qg (s, p0(5))] -

Taking derivative of the object function is equivalent to take
derivative of policy. Formally, the update scheme for the online
actor is

1
Voul = Z V.Q (s,al09) | omos ooy Vorr (s16)],,

Another issue for DDPG is that it seldom performs ex-
ploration for actions. A solution for this is adding noise on
the parameter space or the action space. Figure [2] is the
pseudocode of the DDPG.

Algorithm 1 DDPG

1: Randomly initialize actor y(s[6*) and critic Q(s, a|0%)

2: Create Q" and ;' by 2" — 69 9" — o»

3. Initialize replay buffer R

4: for i =1 to M do

5. Initialize a UQ process A

6 Receive initial observation state sy
7. fort=1t0 T do
g
9

Select action a; = u(s;|6") + N,
Execute action a; and observe ; and s¢ 41

10: Save transition (s¢,a¢,7¢,5:41) In R

11: Sample a random minibatch of N transitions
(S:‘,(Li,'!'i,ﬁi+1) in R

12: Set y; =13 + Q' (six1. 1/ (si41]0#)|09)

13: Update critic by minimizing the loss: L = % S ilyi—
Q(si,ai|09))?

14: Update actor policy by policy gradient:
VuJ

1
~ ? Z VQPC;,)(S- (1|0Q)|s=st.a=p(sf|9“)vﬁ"#(slgu)“i

15: Update the target networks:
69" = 769 4+ (1 —1)p?
0" — 0" + (1 —7)6"

16:  end for
17: end for

Fig. 2. DDPG Pseudo Code

V. EXPERIMENTS

We conducted extensive analysis of the models based on
various hyperparameters such as the learning rate of neural net-
work and features combination. We evaluate the performances
based on the average daily return (ARR), Sharpe Ratio (SR)
and maximum drawdown(MMD).

A. Dataset

Our experiment not only use stock data in U.S. like most
of previous works, but also involve more volatile China stock
market. Our experimental data sources are investinéﬂ and
Win(ﬂ We select a set of stocks with lower or even negative
correlation between each other for the two stock markets in
order to demonstrate the ability of RL agents in different
assets. We choose the open price, close price, the highest price
and the lowest price as the feature space. In the China stock
market, we selected 16 stocks to test the performance of RL
agents on large-scale asset allocation issues. In the U.S. stock
market, we selected 5 stocks. In addition, we select time period
from 1/1/2015 to 12/31/2016 as our training dataset and from
1/1 2017 to 1/1/2018 as our backtest period(testing dataset).

The stock information is shown in Table [I

market  code market code
China 000725 U.S. AAPL
China 000002 U.S. ADBE
China 600000 U.S. BABA
China 000862 U.S. SNE
China 600662 U.S. A%
China 002066

China 600326

China 000011

China 600698

China 600679

China 600821

China 600876

China 600821

China 000151

China 000985

China 600962

TABLE I

STOCK CODE INFORMATION

B. Network structure

For finite historical time dependency, which assumes current
optimal portfolio only depends on finite N historical stock
prices, CNN can be a good choice. Different from previous
work [12], we alternate standard CNN with Deep Residual
Network.

As we know, increasing network depth by simply stack-
ing layers together may not achieve satisfying results. Deep
networks are hard to train because of the notorious vanish-
ing gradient problem. Repeated multiplication may make the
gradient infinitely small. Consequently, as the network goes
deeper, its performance gets saturated or even starts degrading
rapidly. Deep residual network solves this problem by adding a
shortcut for layers to jump to the deeper layers directly, which
could prevent the network from deteriorating as the depth adds.
Deep Residual Network has gained remarkable performance in

Zhttps://Ipi.invest.com/invest.com&nbittrex
3http://www.wind.com.cn/
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Fig. 3. DDPG Network Structure in our experiments
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Fig. 4. PPO Network Structure in our experiments

image recognition and greatly contributes to the development
of deep learning[[13]].

The Actor and Critic network structure of DDPG method in
our experiments is shown in Fig[3] The PPO network structure
is shown in FigH]

C. Result

1) learning rate: The learning rate is a configurable hyper-
parameter used in the training of neural networks that has a
small positive value, often in the range between 0.0 and 1.0.
The learning rate controls the rate or speed at which the model
learns. Specifically, it controls the amount of apportioned error
that the weights of the model are updated with each time
they are updated, such as at the end of each batch of training
examples.

Therefore, we implement PG and DDPG, and test them
using different learning rates on U.S. stock market. Fig[|
shows the PG loss under different learning rates. Figl6| shows
the Critic loss under different critic learning rates. These
results show that learning rates have significant effect on
loss. A learning rate that is too large or too small will
greatly influence the convergence of the model. Based on
the experimental results, we found that learning rates in the
range of 0.0001 and 0.001 generally ensure the convergence
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-0.0006

-0.0008

-0.0010

-0.0012

-0.0014

Fig. 5. PG loss under different learning rates

0.000088
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0.000084

0.000083

0.000082

Fig. 6. Critic loss under different critic learning rates.

of our model. Furthermore, we notice that loss fluctuates with
a decreasing trend due to Actor Critic model.

2) feature combination: In contrast with robot control
whose input is pixels, abundant features can be taken into
considerations in portfolio management. A good feature com-
bination is crucial to deep learning agent, so we should select
those features which contribute most to our task.

Thus, we implement PG and PPO, and test them using
different feature combinations: 1. only with closing prices, 2.
with closing and the highest price, 3. with closing and the
lowest price. Fig[7] shows the reward result of PG on China
stock market during the training process with three feature
combination. Fig[§] shows the reward result of PPO on U.S.
stock market. From these result, we can see that feature com-
binations matter in the training process. By selecting closing
and the highest price, the agent shows the best performance
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Fig. 8. Comparison of PPO reward with different features combinations

in our experiments.

3) compare and analysis: Under satisfying set of hyper
parameters and feature combination, we conduct training for
100 epochs for PG method in both U.S. annd China stock
market, the backtest result shows in Fig[9] and Fig[I0} In each
Figure, Winner means each action the stock trader took
is based on the highest closing price of the previous day.
Losser means each action the stock trader took is based
on the lowest closing price of the previous day.

We also conduct training for 1000 epochs for DDPG
method on China and U.S. stock market. The backtest results
show in Fig[TT] and Fig[T2] These results demonstrates that
RL agents could increase accumulative portfolio value and
perform well in stock market. Our PG and DDPG agents
generally have better performance than traditional trading
strategies, i.e. Winner and Losser. For PG agent, we

13000 PG

—— Winner
Losser
12000

11000

10000 =l "kv_\\

7000

Fig. 9. Backtest of PG in U.S. Stock Market
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Fig. 10. Backtest of PG in China Stock Market

observe that it performs better in the U.S. stock market than
in the China stock market. However, for DDPG agent, the
result is opposite. This observation implies that the difference
between two markets in terms of capacity and volatility should
be considered in the future work.

VI. CONCLUSION

In this project, we have formulated the financial portfolio
management problem into a deep reinforcement learning prob-
lem. We successfully implemented the PG, DDPG and PPO
models and trained them on China and U.S. stock market. The
experiments show that the strategy obtained by PG algorithm
can outperform Winner and Losser in assets allocation.
The stock data is noisy and many external factors other than
historical prices can influence the price trend, which limits the
performance of our other model.
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