Robust Cloth Simulation with Constraints and Collision
Detection

Zhiguo Zhang
McGill University
zhiguo.zhang @mail.mcgill.ca

ABSTRACT

For this project, I implemented a 3D cloth simulator that handles
collisions and constraints using a Backward Euler integrator. The
simulator is tested using a rectangular cloth, an icosphere represent-
ing a obstacle meshes, and a spherical constraint. This simulator
generally produce a good visual effects of cloth-obstacle collisions
and cloth motions.

1 INTRODUCTION

For this project, I extended the idea of particle-spring system, con-
straints and collision detection into 3D by implementing a cloth
simulator in 3D. The code from assignment 1 and 2 forms the back-
bone of this cloth simulator. The first step is extending the existed
functionalities into 3D. Then, using a Backward Euler integrator, I
can update the position and velocity of each particle in each time
step. Using an explicit integrator generally produces an unstable
simulation for large time steps. Since the system in cloth simula-
tion usually contains hundreds of particles, it is impractical to use
small time step. Collision and cloth self-penetration can happen
during cloth simulation. Then, the next step in this project is the
implementation of robust collision detection and response. Lastly, I
incorporated constraints into my cloth simulator. The later sections
discuss the concepts and implementations in detail.

2 RELATED WORK

Baraff and Witkin [1998] provide a very clear problem formulation
for cloth simulation. They show a cloth system that can take large
time steps and new technique for handling constraints using implicit
method. Bridson et al. [2002] describe a robust way to detect and re-
solve contacts and collision in cloth simulation. They also introduce
friction force that makes cloth simulation visually more accurate.
Later work by Goldenthal et al. [2007] discussed methods such as
combining relaxation of strain and adopting simple iterative strain
algorithms, and Constrained Lagrangian Mechanics. This project
focus on and realize some of the ideas from those previous works.

3 MODELING

Particles, springs and triangles are the primitives for building differ-
ent objects in this project. Triangles can represent a planar surface
of a object. The Triangle class uses 3 particles to build a triangle.
We can use 3 points in space to compute the normal vector of a tri-
angle and find the distance between an arbitrary point to the triangle.
With these building blocks, we can formulate our cloth grid and
icosahedron sphere objects in simulation.

COMP559°'W18, July 2018, Montreal, Quebec, Canada

3.1 Cloth Grid Modeling

Firstly, I formulate the cloth grid using a N X N grid. Then, I connect
each vertex with its 8 nearest neighbors. Fig. 1 shows a sample cloth
grid. However, I only form 2 triangles for every 4 adjacent particles,

Figure 1: Mass-Spring Model for Cloth. Source: https:/
graphics.stanford.edu/~mdfisher/cloth.html

namely the top-right and bottom-left triangles. The reason not to
form 4 triangles is that the mass is accumulated at the particle at
each corner.

3.2 Sphere Mesh Modeling

For the sphere meshes, Cajaraville [2018] shows that icosahedron
sphere gives the smallest relative error with the actual sphere. In
order to create a icosahedron sphere, I start with 3 rectangles in
space and take the 12 vertex as the initial vertex of the sphere, then,
keep refining the mesh until the sphere is vivid enough. Fig. 2 to Fig.
5 illustrates how to construct a icosahedron sphere.

Figure 2: Start with 3 rectangles. Source: http://blog.
andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.
html


https://graphics.stanford.edu/~mdfisher/cloth.html
https://graphics.stanford.edu/~mdfisher/cloth.html
http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html

COMP559'W18, July 2018, Montreal, Quebec, Canada

Figure 3: Find the vertex. Source: http://blog.andreaskahler.
com/2009/06/creating-icosphere-mesh-in-code.html

—>»

Figure 4: Refinement. Source: http://blog.andreaskahler.com/
2009/06/creating-icosphere-mesh-in-code.html

Figure 5: Icosahedron Sphere for level 1, 2, 3 refine-
ments. Source: http://blog.andreaskahler.com/2009/06/
creating-icosphere-mesh-in-code.html

Since the number of triangles increases dramatically, 3 level of
refinements can produce a visually appealing sphere.

4 IMPLICIT INTEGRATION

Given current position x (o) and velocity v(ty), we need to the new
position x (¢ + h) and velocity v(ty +h) after a time step of h. We can
solve the problem by solving the following first order differential

equation.
d(x\ v
E() ) (M‘lf(x, v))

As shown by Baraff and Witkin [1998], by using Taylor series ex-
pansion to f, this is equivalent to solve

L Of _,0f _ af
_ 1Y) 12 17 — 1 “J
(I hM £ h“M I )Av hM (fo + hax 9

for Av. Then, using Av, we can get Ax = h(vy + Av). To solve the
system, we need to compute f, %, and g—i. Spring class has the
necessary functionalities to compute these quantities. It remains to
solve the linear system Ax = b. Baraff and Witkin [1998] use a
mass modification to enforce constraints and modified conjugate

gradient method for faster convergence. However, in this project, 1

Zhiguo Zhang

have tried to implement mass modification and modified conjugate
gradient method but failed. The main reason of failure is that the
filter does not have the expected behavior and the system is too
complicate to debug. Due to the limited time for this project, I gave
up this build and used the original CG solver. What I have not tried
is preconditioning on the matrix A to facilitate the convergence.

5 CONTACT AND COLLISION

Contacts and collisions make computer animations vivider. There
are two phases in handling contacts and collision, contact detection
and collision response. Detection focus more on proximity between
meshes and the system before contact. This prevents many visual
artifacts from happening such as cloth inter-penetration. Collision
response shows what will happen if a collision happens. That is
collision response focus more on the effect after collision.

5.1 Detection

There are two possible cases where contacts occur, namely particle-
triangle contacts and edge-edge contact. For particle-triangle con-
tacts, it can happen only if the particle and triangle are coplanar and
particle falls into the face of triangle, i.e. in terms of barycentric
coordinates u,v,w € [0,1] with u + v + w = 1. As described by
Bridson et al. [2002], the simulator checks the coplanar condition
by solving triple product

(321 + twa1) X (x31 + tw3r) - (x41 + tvgy) =0

If t € [0, h], the simulator registers a collision that needs collision
response. A small rounding error is added to boost robustness.

For edge-edge contacts, the simulator checks the coplanar condi-
tion in the same way as before, since it only needs the information
of 4 particles to perform detection. Then, the simulator uses edge
information to check if two edges intersect.

5.2 Response

After detected a possible contact in time interval [0, &), the simula-
tor resolves the collision by adding adjusted impulse response and
adjusted repulsion to the 4 particles. We can compute the impulse us-
ing the relative velocity at contact point before collision, restitution
coefficient, contact normal and mass of each particle. We compute
repulsion as described by Bridson et al. [2002]. We compute the
adjusted impulse and adjusted repulsion by the same scheme. For
particle-triangle contact with triangle x;x2x3 and particle xy, if the
barycentric coordinates w1, w2, w3 intercept with particle x4, then
we compute

) 21
I =
2. .2 2
1+ wi +wy + W
oY = v + wi(I'/m)n i=1,2,3

oY = vy - (I'/m)n
where I is impulse or repulsion, n is contact normal, m is the mass
of particle.
For edge-edge contact with edges xjx2 and x3xy, if the relative
position a on x1xy intercepts with the relative position b on x3x4,
then we compute

, 21

T a2+ (1-a)2+b2+(1-b)2



http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html

Robust Cloth Simulation with Constraints and Collision Detection COMP559'W18, July 2018, Montreal, Quebec, Canada

oY = v+ (1—a)(I'/m)n o™ = vy +a(I'/m)n
vé’ew =v3—-(1-b)I"/m)n vfew =vy—bI'/m)n
We can also compute friction using Coulomb’s model and update
tangential velocity in the event of collision. However, the simulator
does not have this functionality due to limited time.

6 RESULTS

The demo video shows 2 simulations one with two corners of the
cloth pinned and the other with a free falling cloth. The level of
detail for both cloth and icosahedron sphere determines the speed of
simulation. Generally speaking, with larger than 20 x 20 cloth grid
and sphere more than 3 refinement level, the simulation is extremely
slow. The rate determining step in simulation is the continuous colli-
sion detection step. A small blue sphere is added to the simulation
representing a spherical constraint. The method used to enforce this
constraint is using penalty force.

The demo video also shows the unshaded version of the same
simulation, which is more clear in mass-spring point of view. Extra
features like flat shading also implemented but not shown in the
demo video. Flat shading is very useful during debugging.

7 CONCLUSION

This project has extended the content in the first two assignments.
The results look very realistic based on my own inspection. Expand-
ing 2D to 3D on basic concepts are pretty easy to deal. However,
what is unexpectedly hard when expanding to 3D is actually the
rendering. I have to compute normal vector for every vertex and
triangle in the system and then render each vertex and each triangle.
Computer graphics assignments help me a lot to learn how to do
OpenGL rendering. I also tried to use explicit solvers, however, they
are unstable even for a small time step with hundreds of particles.
Resolving the collision is the second most time consuming part
in this project. Basically, I have to redo all the work that I have
done in 2D previously. The 3D geometry is more complex than 2D.
Another aspect that I have considered but not yet implemented is
acceleration techniques for the continuous collision detection pro-
cess. Overall, this is a fun project. I am pleased with the simulations
I have produced.

REFERENCES

Baraff, D. and Witkin, A. 1998. Large Steps in Cloth Simulation. In
Proceedings of the 25th Annual Conference on Computer Graph-
ics and Interactive Techniques (SIGGRAPH "98). New York, NY,
USA, 43-54. http://doi.acm.org/10.1145/280814.280821

Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust Treatment of
Collisions, Contact and Friction for Cloth Animation. In Proceed-
ings of the 29th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’02). New York, NY, USA,
594-603. http://doi.acm.org/10.1145/566570.566623

Cajaraville. 2018. 4 Ways to Create a Mesh for a Sphere. https:
//github.com/caosdoar/spheres. Accessed: 2018-04-04.

Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun,
E. 2007. Efficient Simulation of Inextensible Cloth. In ACM
SIGGRAPH 2007 Papers (SIGGRAPH ’07). ACM, New York,
NY, USA, Article 49. https://doi.org/10.1145/1275808.1276438


http://doi.acm.org/10.1145/280814.280821
http://doi.acm.org/10.1145/566570.566623
https://github.com/caosdoar/spheres
https://github.com/caosdoar/spheres
https://doi.org/10.1145/1275808.1276438

	Abstract
	1 Introduction
	2 Related Work
	3 Modeling
	3.1 Cloth Grid Modeling
	3.2 Sphere Mesh Modeling

	4 Implicit Integration
	5 Contact and Collision
	5.1 Detection
	5.2 Response

	6 Results
	7 Conclusion
	References

